NOAA / Space Weather Prediction Center

Aurora page navigation Link to SWPC Home Link to Auroral Activity Link to Energetic Particles Link to Gopher Site

Tips on Viewing the Aurora

Being able to see the Aurora depends mainly on two factors, geomagnetic activity (the degree of disturbance of the earth's magnetic field at the time) and your geographic location. Further considerations are the weather at your location, and light pollution from city lights, full moon and so forth.

Geomagnetic Activity -- The Kp Index and the NOAA POES Auroral Activity Level

In order to know whether you have a chance of seeing an aurora, you need to know the level of geomagnetic activity at the time you are viewing. There is a simple index called Kp, a number from 0 to 9, which is used to refer to geomagnetic activity for a 3-hour period. Check the Space Weather Prediction Center's bar plot of Estimated Planetary Kp to see what has been happening during the past couple of days. This plot updates every 3 hours with the latest Kp value. The Space Weather Prediction Center's Solar-Geophysical Forecast for the next 24 hours (see SWPC's Today's Space Weather page) might also be of help.  If the GEOPHYSICAL ACTIVITY FORECAST is for "storm" levels SWPC expects Kp indices of 5 or greater.  Another indication of geomagnetic activity is the NOAA POES Auroral Activity Level, which is a number from 1 to 10. Further down on this page is a table that shows how Kp and the Auroral Activity Level compare with each other.  Take a look at SWPC's POES Auroral Activity page to see the latest Activity Level. Moon phases can also be found on the web.

Location, location, location!

In general, you are more likely to see an aurora if you are at a high latitude, i.e. closer to the north (or south) pole. However, there is a catch to this. The earth's magnetic poles are not exactly in line with the geographic poles, so the latitude of interest would really be the magnetic latitude. Note that it is not necessary for the equatorward boundary of the aurora to reach all the way down to your magnetic latitude for you to see it.  The aurora is easily visible even when its boundary is 4 or 5 degrees poleward of your location.  So, how do you know what your magnetic latitude is? We have several methods to help you:

North America

Europe and Asia

Southern Hemisphere

City

Magnetic Latitude*

City

Magnetic Latitude*

City

Magnetic Latitude*

Atlanta

44.5

Athens

31.3

Adelaide

45.9

Boston

51.7

Berlin

48.3

Buenos Aires, Argentina

23.3

Chicago

52.2

Copenhagen

51.9

Capetown

41.5

Dallas

42.7

Edinburgh

53.0

Christchurch

49.9

Denver

48.3

London

47.5

Comodoro Rivadavia, Argentina

32.1

Great Falls, MT

54.9

Madrid

33.3

Concepcion, Chile

23.2

Havana

34.1

Moscow

51.8

Dunedin

53.0

Los Angeles

39.8

Paris

44.2

Durban

38.8

Mexico City

29.1

Perm

53.8

East London

41.1

Minneapolis

55.1

Prague

45.5

Hobart

53.6

New York

50.6

Rome

35.5

Melbourne

48.4

Quebec City

56.2

St. Petersburg

56.1

Perth

43.9

San Francisco

42.5

Warsaw

46.7

Punta Arenas, Chile

38.6

Seattle

52.7

Beijing

34.1

Sydney

43.5

St. Louis

49.2

Irkutsk

47.0

Toronto

53.9

Seoul

31.0

Washington, DC

49.1

Tokyo

29.0

Winnipeg

59.5

Vladivostok

36.5

When geomagnetic activity is low, the aurora typically is located, in the hours around midnight, at about 67 degrees magnetic latitude*. As activity increases, the region of aurora expands toward the equator. When geomagnetic activity is very high, the aurora may be seen at mid and low latitude locations around the earth that would otherwise rarely experience the polar lights.

Kp maps of midnight equatorward boundaries

There are maps for four quadrants of the globe: The average equatorward boundary of the midnight aurora is shown for levels of magnetic activity ranging from relatively low, Kp=3, to very high, Kp=9. Clicking on the map at that location will give the approximate magnetic latitude for that location. (Keep in mind that aurora can still be viewed when it is positioned 4-5 degrees in latitude away from the viewer although it will appear about 20 above the horizon.) These maps were created using satellite observations to determine the average equatorward boundary of the aurora as a function of the Kp index**. Using those data, the typical maximum extent of the aurora toward the equator for the hours around midnight for four levels of geomagnetic activity is displayed.

* Corrected magnetic latitude
**The Handbook of Geophysics and the Space Environment, Air Force Geophysics Laboratory, 1985

Putting It All Together -- Can I, or can't I, see the Aurora?

Once you know your magnetic latitude, and how high the Kp index needs to be for you to see the aurora at your magnetic latitude, it comes down to choosing a viewing time of high magnetic activity by frequently checking the Kp index and SWPC forecast. It could also be worthwhile to check the POES Auroral Activity page, which might or might not be more up-to-date than the Kp, depending on the time of the most recent polar pass of the POES satellite. (The table below will help you relate the POES Auroral Activity Level to the Kp index.) Of course, for you to see the aurora it will also have to be a clear night without interference from city lights or moonlight.

Further Information about the Aurora

Comparison of Auroral Boundaries from Kp and Auroral Activity Level at Local Midnight

Magnetic Latitude

Kp

Magnetic Latitude

NOAA POES Auroral Activity Level

66.5

0 67.5 1

64.5

1 66.5 2

62.4

2 65.6 3

60.4

3 63.9 4

58.3

4 62.5 5

56.3

5 60.7 6

54.2

6 58.6 7

52.2

7 56.7 8

50.1

8 54.6 9

48.1

9 51.0 10
48.5 10+
45.0 10++
If you have Adobe Acrobat, you might like to refer to SWPC's topic paper on Aurora. pdf_icon.gif (1147 bytes)