

Air Force Research Laboratory

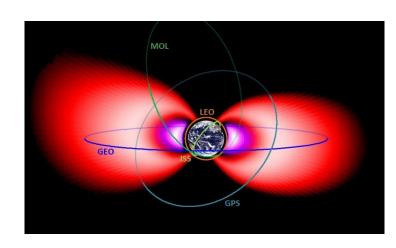
Integrity ★ Service ★ Excellence

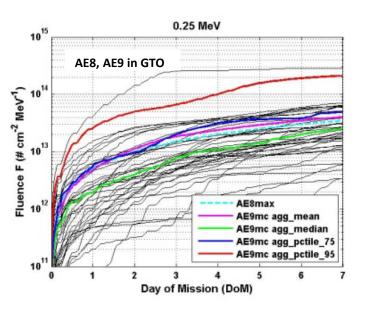
Cross-Calibration Procedures in AE9/AP9/SPM

25 April 2016

Wm. Robert Johnston, Paul O'Brien, Stu Huston, Chris Roth, Shawn Young

Space Vehicles Directorate, Air Force Research Laboratory





AE9/AP9/SPM

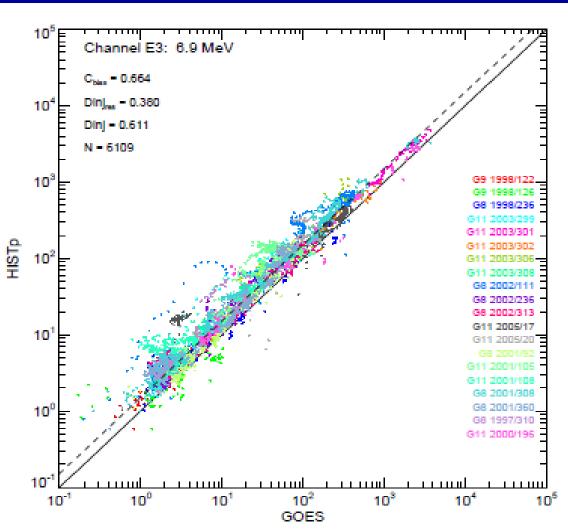
- AE9/AP9/SPM specifies the natural <u>trapped</u> radiation environment for satellite design and mission planning
- It improves on legacy models to meet modern design community needs:
 - Uses 37 long duration, high quality data sets (many covering a full solar cycle)
 - Full energy and spatial coverage—plasma added
 - Introduces data-based uncertainties and statistics for design margins (e.g., 95th percentile)
 - Dynamic Monte Carlo scenarios provide worst case estimates for hazards (e.g., SEEs)
 - Architecture supports routine updates, maintainability, third party applications
- Version 1.00 released in Sep 2012
- Version 1.20 released in Feb 2015
- Version 1.30 released in Feb 2016

Cross-Calibration Objectives

- For AE9/AP9/SPM, on-orbit intercalibration of instruments is required in order to—
 - Determine systematic offsets between data sets (bias)
 - Determine measurement uncertainty (random error)
- Data sets are corrected for bias relative to an instrument nominally identified as a "gold" standard
 - Proton standard: GOES 8/SEM
 - Electron standard: CRRES/MEA+HEEF
- Random error is an input into development of flux maps
- Applications of standardized cross-cal for the models:
 - Supports "turn-key" ingestion of new, large data sets
 - Minimizes discontinuities at edges of data set coverage

General Procedures (1)

- Use lowest level of data possible
 - For example, dosimeter channel results rather than results from inversions
- Construct comparable channels
 - Interpolate from standard channel energies to energies of target instrument
 - Integrate from standard differential channels to compare to target integral channels
- Typically use omnidirectional averaged data
- If available, use multiple pair-wise cross-cals
 - Whether average or best of multiple cross-cals is adopted depends on available statistics
- Bias and error estimates are produced independently for each channel where comparisons are possible
 - For target channels with no overlap, values from the channel closest in energy are used



General Procedures (2)

- Cross-cal uses cleaned data
 - Remove backgrounds, contaminated data, etc.
- Statistics based on linear fit to log data
 - Typically require slope=1 (i.e., same bias offset is used at all flux levels)

Figure shows SPE observations, Polar/HISTp vs. GOES/SPM, 6.9 MeV channel

Definition of Statistics

The principal intercalibration statistics needed for incorporating data sets are referred to as *cbias* and *dlnj*.

- Take J_A and J_B, series of joint flux observations by satellites A and B, respectively (A=standard, B=target), for a single energy channel.
- Find median ratio

$$R = median(\mathbf{J}_{B}/\mathbf{J}_{A}).$$

 The bias of J_B relative to J_A is described by cbias = R.

The satellite B series is adjusted

$$\mathbf{J'}_{\mathsf{B}} = \mathbf{J}_{\mathsf{B}} / \mathsf{R}$$

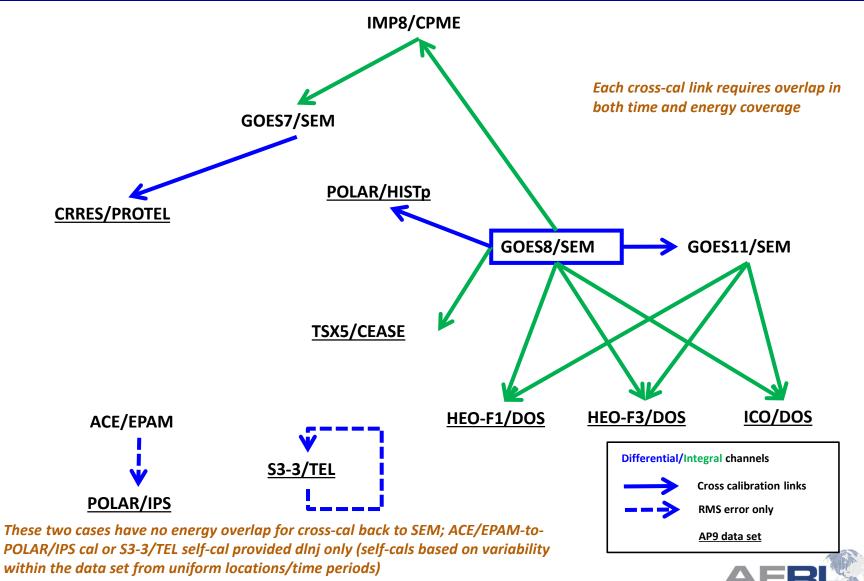
so that the series J_A and J'_B have the same medians.

The residual error is

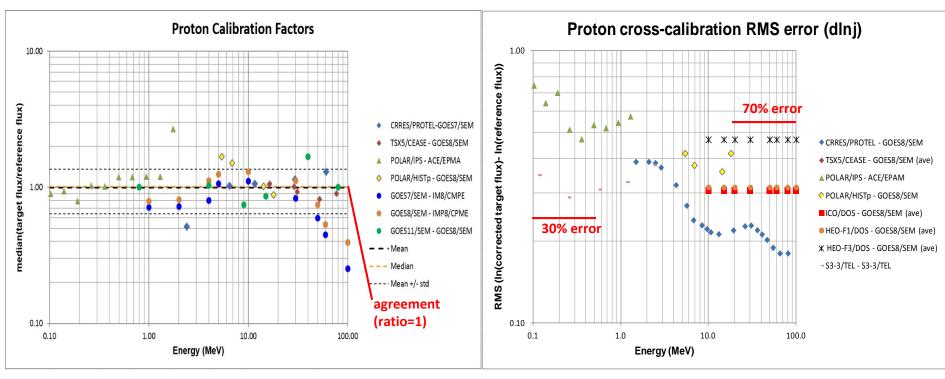
$$RE=ln(J'_B/J_A).$$

• The random error of series J_B is $dlnj=[(1/n)(\Sigma RE^2)]^{0.5}$.

Procedure for Protons

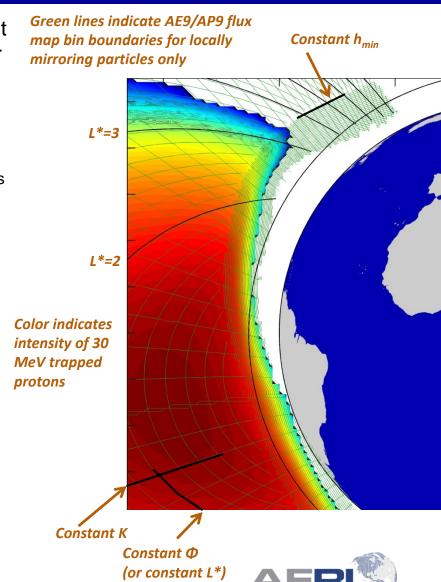

- GOES SEM used as "gold" standard
- Correction made to differential energy values for published channel values
 - Better accounts for monotonically decreasing spectra across channels (Ginet et al., IEEE TNS, 57:3135)
- Use SPE observations for conjunctions
 - Time periods from NGDC SPE list
 - Require >3 pfu in SEM channel (>10, >30, >60, >100 MeV)
 - Require spacecraft L_m>5.5

Proton CrossCal Tree



Proton Results

Some results above were averaged across channels for use in model development; assumed values for ICO and HEO are not shown


- Typical cbias values correspond to agreement within 10-20%
- Typical dlnj values correspond to 30-70% error

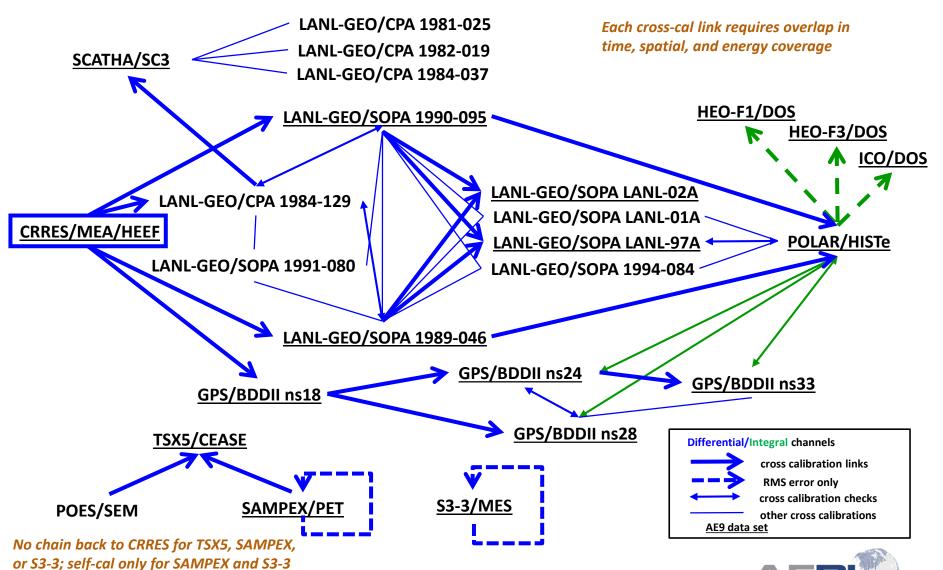
Magnetic Coordinates

- For electrons, SPE-like "standard candles" aren't available, so magnetic conjunctions are used for cross-cal
 - Same is true for protons if SPEs aren't useable, if:
 - Too few SPEs for statistics (like now?)
 - Low inclination LEO satellites
 - Can use trapped protons for cross-cal in these cases
- Option (1): use conjunctions in L and B/B₀
 - Used as native grid in legacy AE8/AP8 flux maps
 - Generally used for AE9/AP9 cross-cal to date
- Option (2): use conjunctions in AE9/AP9's native flux map grid:
 - High altitude grid uses magnetic invariants
 K (related to equatorial pitch angle) and
 Φ (related to L*)
 - Low altitude grid uses K and h_{min} (=minimum altitude encountered on a drift path)
 - Grid parameters and bin sizes were selected to minimize trapped particle variation within bins
 - Limited use in AE9/AP9 cross-cals to date, but expected to be used more going forward

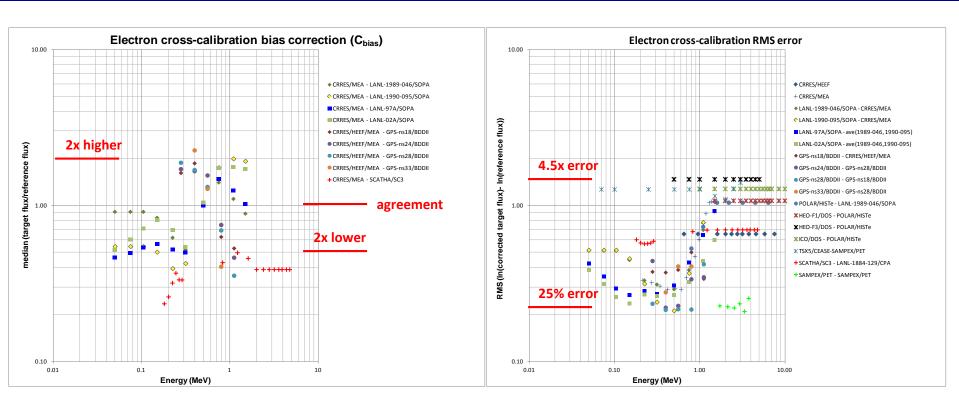
Procedure for Electrons

- CRRES MEA+HEEF used as "gold" standard
- Specifically, used data set version based on MEA+HEEF intercalibration (Johnston et al., 2014, AFRL-RV-PS-TR-2014-0016)
- Use magnetic conjunctions (option 1)
 - Eliminate active times and SPE periods
 - High altitudes: magnetic conjunction criteria based on Friedel et al. (2005, *Sp. Weather*, 3:S09B04)
 - Match L*, B/B₀, and UT
 - Assume little MLT variation
 - Adjust constraints for necessary statistics
 - Low altitudes: too much variation across L* and B/B₀ ranges, so add geographic constraints (e.g., GLON) or use model invariant coordinates (e.g., K-h_{min})

Criterion	AE9 CRRES—GEO	Friedel et al.
L*	<6.5	<6.0
ΔL*	<0.1	<0.1
Δ(B/Bo)	<0.1	<0.1
ΔUT	<3-4 hr	<3 hr
MLT	4-8 or 16-20	4-8 or 16-20
ΔΜΙΤ	N/A or <2 hr	<2 hr
Кр	<3 last 48 hr	<2 last 48 hr


Criterion	AE9 TSX-5SAMPEX
L*	2.5 <l*<6.5< td=""></l*<6.5<>
ΔL*	<(lesser of 0.1 and 5%)
Δ(B/Bo)	<0.1
ΔUΤ	<4 hr
ΔGLON	<60 deg
GLAT	same hemisphere

Electron CrossCal Tree



Electron Results

- Larger cbias differences (factor of 1.5-2.5) than protons
- Larger dlnj values (25%-factor of 4 error) than protons
- Reflects greater challenges for electron measurements plus weaker intercomparisons (conjunctions not matching environment)

Further Information

- More details are in the AE9/AP9/SPM technical documentation (some now complete, some forthcoming), such as
 - Descriptions of cross-calibration and data cleaning procedures
 - Reports on cross-calibrations for individual data sets
- Documents which are currently available are on our model distribution website:
 - https://www.vdl.afrl.af.mil/programs/ae9ap9/

