Automatic prediction of SEP events and the first hours of their proton fluxes with E > 10 MeV and E > 100 MeV

> Marlon Núñez Universidad de Málaga, Spain

Contents

- Main characteristics of UMASEP
- UMASEP architecture
 - Well-connected SEPs
 - Poorly-connected SEPs
- Predicting SEP events with E > 10 MeV
- Predicting SEP events with E > 100 MeV
- Verification results
- A possible use of automatic SEP forecasters
- Conclusions

Type of SEP events predicted by UMASEP

- The goal of UMASEP is to predict Solar Energetic Particle (SEP) events that meets or surpass the following SWPC's thresholds:
 - E > 10 MeV and integral proton flux >10 pfu
 - E > 100 MeV and integral proton flux > 1 pfu
- Regardless of the type of SEP event:
 - Prompt SEP (detected at 1AU a few minutes/hours after the flare/CME event)

Type of SEP events predicted by UMASEP

- The goal of UMASEP is to predict Solar Energetic Particle (SEP) events that meets or surpass the following SWPC's thresholds:
 - E > 10 MeV and integral proton flux >10 pfu
 - E > 100 MeV and integral proton flux > 1 pfu
- Regardless of the type of SEP event:
 - Prompt SEP (detected at 1AU a few minutes/hours after the flare/CME event)
 - Delayed SEP (detected at 1AU several hours/days after the flare/CME event)

It is a real-time predictor of:

- The time interval within which the integral proton flux is expected to surpass the SWPC's thresholds for events with E >10 MeV and >100 MeV
- The intensity of the first hours of SEP events

■ It is a real-time predictor of:

- The time interval within which the integral proton flux is expected to surpass the SWPC's thresholds for events with E >10 MeV and >100 MeV
- The intensity of the first hours of SEP events
- "All-clear" situations (useful during high solar activity)

■ It is a real-time predictor of:

- The time interval within which the integral proton flux is expected to surpass the SWPC's thresholds for events with E >10 MeV and >100 MeV
- The intensity of the first hours of SEP events
- "All-clear" situations (useful during high solar activity)

■ It is an automatic system.

It collects information that is available in a 5-min basis and issues the forecasts seconds later. Forecasts are available by http/ftp/WebService

■ It is a real-time predictor of:

- The time interval within which the integral proton flux is expected to surpass the SWPC's thresholds for events with E >10 MeV and >100 MeV
- The intensity of the first hours of SEP events
- "All-clear" situations (useful during high solar activity)

■ It is an automatic system.

It collects information that is available in a 5-min basis and issues the forecasts seconds later. Forecasts are available by http/ftp/WebService

5-min data from Goes

- X-ray flux
- Integral proton fluxes
- Differential proton fluxes

■ It is a real-time predictor of:

- The time interval within which the integral proton flux is expected to surpass the SWPC's thresholds for events with E >10 MeV and >100 MeV
- The intensity of the first hours of SEP events
- "All-clear" situations (useful during high solar activity)

■ It is an automatic system.

It collects information that is available in a 5-min basis and issues the forecasts seconds later. Forecasts are available by http/ftp/WebService

5-min data from Goes

- X-ray flux
- Integral proton fluxes
- Differential proton fluxes P3 = Protons from 9 - 15 MeV

P11= Protons from >700 MeV

■ It is a real-time predictor of:

- The time interval within which the integral proton flux is expected to surpass the SWPC's thresholds for events with E >10 MeV and >100 MeV
- The intensity of the first hours of SEP events
- "All-clear" situations (useful during high solar activity)

It is an automatic system.

It collects information that is available in a 5-min basis and issues the forecasts seconds later. Forecasts are available by http/ftp/WebService

5-min data from Goes

- X-ray flux
- Integral proton fluxes
- Differential proton fluxes P3 = Protons from 9 - 15 MeV

P11= Protons from >700 MeV

new forecasts every 5 min

It takes 45 seconds for UMASEP to receive data and process the models

UMASEP

■ It is a real-time predictor of:

- The time interval within which the integral proton flux is expected to surpass the SWPC's thresholds for events with E >10 MeV and >100 MeV
- The intensity of the first hours of SEP events
- "All-clear" situations (useful during high solar activity)

■ It is an automatic system.

 It collects information that is available in a 5-min basis and issues the forecasts seconds later. Forecasts are available by http/ftp/WebService

■ UMASEP's forecasts are redistributed by other systems (addic. UMA)

- <u>NASA's ISWA system since January 2010</u>
- European Space Weather Portal since November 2009

Contents

Main characteristics and versions of UMASEP

- UMASEP architecture
 - Well-connected SEPs
 - Poorly-connected SEPs
- Predicting SEP events with E > 10 MeV
- Predicting SEP events with E > 100 MeV
- Verification results
- A possible use of automatic SEP forecasters
- Conclusions

Architecture of UMASEP

To face the old problem of predicting SEP events, we applied an engineering approach:
We designed an *empirical model* and tune its parameters with large amounts of data

- The design of this dual-model was based on the discovery of correlations by using 12 time series with <u>27 years</u> of data
- Model tuning by using our verification tools to:
 - augment accuracy & anticipation
 - reduce false warnings & intensity errors

(*) For more information, see paper in the Space Weather journal, July 2011 [Núñez, 2011]

(*) For more information, see paper in the Space Weather journal, July 2011 [Núñez, 2011]

<u>Preliminary</u> forecast_of a <u>well</u>-connected SEP

(*) For more information, see paper in the Space Weather journal, July 2011 [Núñez, 2011]

(*) For more information, see paper in the Space Weather journal, July 2011 [Núñez, 2011]

Contents

- Main characteristics and versions of UMASEP
- UMASEP architecture
 - Well-connected SEPs
 - Poorly-connected SEPs
- Predicting SEP events with E > 10 MeV
- Predicting SEP events with E > 100 MeV
- Verification results
- A possible use of automatic SEP forecasters
- Conclusions

Real-time prediciton of well-connected >10 MeV events

March 8, 2011 (3:00 UTC)

UMASEP anticipated the event start (red dot) in 1 h 30 m

UMASEP identified the intensity and peak time of the associated flare

NASA's ISWA: http://iswa.gsfc.nasa.gov

Real-time prediciton of poorly-connected >10 MeV events

07/23/2012: UMASEP anticipated the SEP event in 3 h 15 min

July 23, 2012

Real-time prediciton of poorly-connected >10 MeV events

07/23/2012: UMASEP anticipated the SEP event in 3 h 15 min

July 23, 2012

03/16/2013: UMASEP anticipated the SEP event in 13 h 40 min

March 16, 2013

(*) These forecast images were copied from NASA's ISWA historical data base

Contents

- Main characteristics and versions of UMASEP
- UMASEP architecture
 - Well-connected SEPs
 - Poorly-connected SEPs
- Predicting SEP events with E > 10 MeV
- Predicting SEP events with E > 100 MeV
- Verification results
- A possible use of automatic SEP forecasters
- Conclusions

Real-time prediction SEP events with E >100 MeV

UMASEP anticipated the >100 MeV event in 1 h 5 min

April 11, 2013

Contents

- Main characteristics and versions of UMASEP
- UMASEP architecture
 - Well-connected SEPs
 - Poorly-connected SEPs
- Predicting SEP events with E > 10 MeV
- Predicting SEP events with E > 100 MeV
 - Verification results
- A possible use of automatic SEP forecasters
- Conclusions

Verification for E > 10 MeV and E > 100 MeV (since 1986)

	UMASEP 1.1's verification results on historical data using cycle 22, 23 and 24	
	E> 10 MeV	E > 100 MeV
Probability of Detection	83.7%	82.7%
False Alarm Ratio	31.3%	36.3%
Average Warning Time	WC events: 1 h 1 m PC events: 8 h 4 m	1 h 12 m

Verification for E > 10 MeV and E > 100 MeV (since <u>1994</u>)

Situations older than 1994 are normally not included in the verification of SEP forecasters; to give a more fair view, we are also providing the verification results with data from 1994.

	UMASEP 1.1's verification results on historical data since 1994	
	E>10 MeV	E>100 MeV
Probability of Detection	<u>87.3%</u>	83.0%
False Alarm Ratio	<u>21.80%</u>	34.4%
Average Warning Time	WC events: 1 h 7 min PC events: 8 h 10 min	52 min (median 20 min)

Regarding E>10 MeV, SWPC's scientists yield better SEP forecasting performance results than the automatic UMASEP forecaster, however our system is not very far...

Contents

- Main characteristics and versions of UMASEP
- UMASEP architecture
 - Well-connected SEPs
 - Poorly-connected SEPs
- Predicting SEP events with E > 10 MeV
- Predicting SEP events with E > 100 MeV
- Verification results
- A possible use of automatic SEP forecasters
- Conclusions

An automatic SEP predictor could be aboard a spacecraft sending streams of estimation data without delay

Approach: GOES's Xr & Pr instruments/UMASEP

The same UMASEP's verification results (POD/FAR/etc.) are expected at any point within the Earth's orbit

s/c with GOES's Xr & Pr instruments/UMASEP

Well-connected Poorly-connected events

Current model's settings could yield similar verification results within certain range of orbits

Contents

- Main characteristics and versions of UMASEP
- UMASEP architecture
 - Well-connected SEPs
 - Poorly-connected SEPs
- Predicting SEP events with E > 10 MeV
- Predicting SEP events with E > 100 MeV
- Verification results
- A possible use of automatic SEP forecasters

	UMASEP 1.1's verification results cycle 22, 23 and 24	
	E> 10 MeV	E > 100 MeV
Probability of Detection	83.7%	82.7%
False Alarm Ratio	31.3%	36.3%

	UMASEP 1.1's verification results cycle 22, 23 and 24 / since 1994	
	E> 10 MeV	E > 100 MeV
Probability of Detection	83.7% / <u>87.3%</u>	82.7% / 83.0%
False Alarm Ratio	31.3% / <u>21.80%</u>	36.3% / 34.4%

	UMASEP 1.1's verification results cycle 22, 23 and 24 / since 1994	
	E> 10 MeV	E > 100 MeV
Probability of Detection	83.7% / 87.3%	82.7% / 83.0%
False Alarm Ratio	31.3% / 21.80%	36.3% / 34.4%

- It is possible to automatically predict the events that meets one of the following SWPS's thresholds: E>10 MeV and >10 pfu, E>100 MeV and >1 pfu.
- The strategy of exhaustive model training with data of several solar cycles is a promising field of research and provides competitive real-time forecasting services
- This strategy inspires applications that could help to prevent radiation hazards within the Earth's orbit and nearby interplanetary orbits

Thank you !

Visit our site: http:// spaceweather.uma.es / forecastpanel.htm