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Abstract: 

 

The timescale for creating high potentials on shadowed spacecraft surfaces depends on the conductivity of the surface in 

question, whether the neighboring surfaces are tied to the spacecraft frame or not, and on the space environment input.  It is 

understood from laboratory and spaceflight measurements that the likelihood of a large surface potential and the timescale over 

which it might occur depends on these variables, yet the complex interplay between them makes the hazard difficult to assess 

even in controlled experiments.  In this paper we approach the specific question of the timescale of surface charging using 

several datasets in several orbit regimes: GEO, HEO, and LEO.  The measurements we will show involve different approaches 

to the question of surface charging and subsequent ESD (GEO: surface charge monitors; HEO: direct plasma measurements; 

LEO: anomalies due to surface charging).  However, the main strengths of the data derive from their long duration covering 

multiple years and their occasional overlap in time.  At the meeting we will thus report on the timescale of surface charging 

events at different locations in the magnetosphere across ~11 years of geomagnetic activity.  The results will be relevant for 

assessments of space system impact due to surface discharges and ESD, simulations of surface charging, and laboratory 

testing of flight systems designs. 
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Objective & Outline 

 

• Objective: Derive the worst-case timescales for surface charging in a 

variety of orbits 

 

• Outline: 

– Details of the three surface charging databases 

• Examples from LEO, HEO, and GEO 

• Local time dependence 

• Seasonal dependence 

– Results of the charging event duration study 

– Summary 
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On-Orbit Anomaly Statistics 

 

• Anomalies occur at all phases of the solar cycle 

• Vehicle charging and single-event effects are the most frequently cited causes of 

on-orbit anomalies  

-Koons, et al., The Impact of the Space 
Environment on Space Systems, Aerospace 
Corp. report no. TR-99(1670)-1, 20 July 1999 

-2009 preliminary study (unpublished) 
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Surface Charging Databases 

• This survey includes signatures of the surface-charging hazard 

observed in three orbital regimes: LEO, HEO, and GEO.   

• Portions of the HEO and GEO measurements have been 

discussed previously in the literature and at previous satellite 

surface charging conferences, while the LEO example has not 

been as widely discussed. 

*Mazur et al., IEEE Trans. Plasma Sci. submitted 2011 

* 



Joseph.mazur@aero.org 

PSL/SSD 
7 

An Example From the LEO Database 

• A commonly cited example of satellite surface charging in LEO is 

from the DMSP vehicles (e.g. Gussenhoven et al. 1985; 

Frooninckx & Sojka 1992 & references therein).  

• Thus, it was a surprise to encounter a set of LEO anomalies that 

have more in common with surface charging signatures at GEO  

rather than within the unique conditions of auroral arcs.  
 

• This figure shows one such 

event from the SAMPEX 

satellite 

• The subsequent figures in 

this talk show more evidence 

for why we believe these 

anomalies are a unique 

signature of surface charging 

in LEO 
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An Example From the HEO Database 

• Fennell et al. [2008] 

recently reviewed the 

statistics of HEO 

charging events using 

a plasma analyzer on 

board the HEO2 

spacecraft 

• For this paper we used 

the same dataset as  

the Fennell et al. 

[2008] study 
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An Example From the GEO Database 

• There are many published 

examples of surface 

charging in GEO 

• Here we used the 

charging signature from a 

charging plate analyzer 

(Bogorad et al. 1995) on 

board one of the Intelsat 

satellites (e.g. Ozkul et al. 

2001; Koons et al. 2006; 

Likar et al. 2009).   

 

• The Intelsat database benefits from very long time coverage, a clear 
response to plasmasheet electrons when the sensor is in shadow, and 
the ability to place a wide range of thresholds on the charging level 
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Solar Cycle Coverage  

• Our three charging 

datasets overlapped in 

time during solar cycle 23  

• The LEO database is the 

only one that included the 

descent to the 1996 solar 

minimum when several 

recurrent high-speed 

solar wind streams led to 

severe geomagnetic 

storms 

• However, geomagnetic 

activity that leads to 

surface charging 

occurred within every 

dataset 
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Coincident Charging Signatures  

• The figure shows a 2 month 

period in 2001 in order to 

establish that our charging 

signatures responded to the 

same environmental inputs, 

at least on the timescale of a 

few days 

• We chose not to focus on the 

studies of specific events 

across the three orbits  
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Organization By Local Time 

• Event occurrence versus L shell and local time is a common way of 

organizing the data to show the unique signature of the drift of 

plasmasheet electrons from the magnetotail towards dawn local time.   

• This has been done with the GEO and HEO databases already (Ozkul 

et al. 2001; Fennell et al. 2008) but we combine all the datasets here to 

emphasize the point that they show the same phenomenon. 
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Seasonal Probabilities 

• One expects a semiannual 

variation in the charging 

signatures because the 

driving geomagnetic activity 

exhibits such a pattern due to 

the projection of the 

interplanetary magnetic field 

on the magnetosphere. 

(Russell & McPherron 1973) 

• To our knowledge, this is the 

first time such a seasonal 

variation has been shown for 

charging in a wide range of 

orbits 
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LEO Duration 

• It is puzzling that we encountered charging-related anomalies that 

lasted a significant fraction of the LEO orbital period (~ 90 minutes) 

• Timescale to traverse L=3.75 to 7 is 2 to 13 minutes 

• The worst-case in July 2002 lasted 164 minutes 
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LEO: L Shell Traversal Rate 

• It took the SAMPEX vehicle as 

long as 13 minutes to traverse this 

range of L, but the most likely 

traversal time was closer to 2 

minutes.   

• Thus, anomalies sometimes 

continued well beyond the spatial 

region within which the 

plasmasheet electrons were likely 

located.   

• One might have expected that the 

charging-related anomaly would 

cease if the electron input was no 

longer present; this was clearly not 

the case 
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Unique Low-L LEO Events 

• One unique aspect of this LEO database is the presence of events 

well inside the typical inner edge of the plasmasheet.   

• The anomalies that occurred below L=2 appeared after April 2001 and 

were most prevalent in July 2002.   

• We suggest that they were related to intense and long-lived injections 

of electrons into the inner radiation belt that appeared in mid-2001  
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HEO Duration 

 

• As was the case for LEO, we also had events that appear to last longer 

than the time required to traverse the nominal charging region  

• Timescale to traverse L=4 to 7 is 3 to 45 minutes 

• The worst-case in May 1998 lasted 97 minutes 
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HEO: L Shell Traversal Rate 

 

• The typical timescale for 

traversals of L=3.75 to 7 ranges 

up to 45 minutes, yet there 

were 22 events that lasted 

longer than 60 minutes  

• These long-duration events 

correlated with the maximum L 

shell of the charging, meaning 

that while the longest lasting 

events began near L=4 to 5, 

they continued up to higher L, 

beyond GEO 
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GEO Duration 

 

• For GEO we have the added variable of charging threshold; here we show the 
99.9% worst-case charging level. 

• The slope of the duration distribution changes little with the threshold potential, 
and we are able to almost arbitrarily define the worst-case charging duration 
from as long as ~12 hours to as short as ~80 minutes.  

• These histories are directly proportional to the timescales of changes in the 
charging environment itself.  
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Normalized Distributions 

• These distributions imply that 

for surface charging lasting a 

few to 10 minutes, the LEO and 

HEO frequencies of occurrence 

were comparable.   

• All three orbits had worst-case 

durations between 1 and 2 

hours 

• It is interesting that if one 

chooses a lower GEO potential 

than shown here, then the 

worst-case duration at GEO can 

be an order of magnitude longer 

than HEO’s 97 minutes 
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Summary (1 of 2) 

 

• The databases had these major shortcomings:  

– unknown charging level (and exact anomaly mechanism) for LEO 

– minimum L shell of ~4 for HEO 

– unclear choice of appropriate charging level to choose for GEO.   

• We note that the HEO charging level was low (-30 volts), so the HEO 

dataset was not restricted to the worst-case levels.   

• The LEO and HEO events had similar occurrence probabilities  

suggesting a sensitivity to relatively low-level charging in LEO, 

although we cannot prove this directly with the LEO anomalies.   
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Summary (2 of 2) 
 

• We find several compelling aspects of vehicle surface charging in the magnetosphere 
that are quantitative, reproducible, and might serve as a reference for future 
measurements or laboratory work on the surface charging phenomenon: 

 

1. Worst-case durations for LEO (164 minutes) and HEO (97 minutes) 

2. Both LEO and HEO longest-duration events were much longer than the orbital 
residence time within the nominal L=4 to L=6 surface charging region (on the 
order of 10 and 50 minutes for LEO and HEO, respectively) 

3. Worst-case duration for GEO that varied from 667 minutes at -100 volts to 82 
minutes at -475 volts 

4. Within these databases, there were comparable likelihoods for LEO and HEO 
charging events to occur and last the same amount of time at both orbits (e.g. 
at a 10 minute duration, both LEO and HEO likelihoods were ~ 2e-03)  

5. New evidence for LEO vehicle charging inside L=2 during intense injections of 
electrons into the inner magnetosphere 

 

• It is clear that a simple residence time argument is insufficient to characterize the 

worst-case duration for surface charging in LEO and HEO 

• For GEO, the worst-case duration depends more on the charging level than on 

traversal rate through the relevant local times.  
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