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1. Introduction

[2] A primary goal of space weather research is to
accurately predict the onset and magnitude of geomagnetic
storms with enough lead time, accuracy, and reliability so
that decision makers can use such predictions to minimize
the harmful effects of such storms on, for example, space-
craft, communication, and navigation systems. A funda-
mental component of any space weather forecast capability
is the ability to diagnose and predict the solar wind and the
structures that lie therein. Shocks in the solar wind plasma
and deformations of the ambient magnetic field associated
with Coronal Mass Ejections (CMEs), stream-stream inter-
actions, and Corotating Interaction Regions (CIRs) herald
the arrival of geomagnetic storms [c.f., Luhmann, 1997 and
references therein]. The ability to forecast these events is
crucial to a successful space weather capability.
[3] Several models aimed at forecasting solar wind con-

ditions at 1 AU have been developed and show varying
degrees of skill. The basis of these models varies substan-
tially. For example, the Shock Time Of Arrival (STOA)
model [Dryer and Smart, 1984; Smart and Shea, 1984,
1985] is based on a similarity theory of blast waves and
seeks to predict only a single quantity (shock arrival time).
Also used for this purpose is the Interplanetary Shock
Propagation Model (ISPM) which is a statistical and para-

metric model based on 2.5-dimension magnetohydrody-
namic (MHD) simulations [Smith and Dryer, 1990].
Slightly more complex is the kinematic solar wind model
of Hakamada-Akasofu-Fry (HAF) that in addition to shock
arrival time, provides the vector direction and magnitude of
shocks as well as forecasts of solar wind speed, density,
dynamic pressure and interplanetary magnetic field [Fry et
al., 2001, and reference therein]. Even further down this
spectrum of complexity are the fully three-dimensional
(3-D) MHD codes that are currently under development
and promise to provide even greater accuracy and fidelity in
solar wind forecasting [c.f., Riley et al., 2001; Gombosi et
al., 2001].
[4] All of these solar wind models require similar inputs

in order to produce a forecast. They all start with an
observed event, such as an optical or X-ray flare, or a
white-light coronagraph observation of a CME. These
observations serve as indicators that a CME or some other
disturbance may have been launched from the Sun into the
interplanetary solar wind field. Metric Type II radio bursts,
which are considered to be the signatures of shocks travel-
ing outward through the corona are used to determine the
initial shock speed and duration. The location of the initial
flare on the Sun provides information on the direction of the
disturbance. In addition to these data the STOA model also
requires ambient solar wind velocity, which is available
from Sun-orbiting satellites and HAF requires the magnetic
field on the so-called potential field source surface, which is
derived from magnetogram observations of the Sun.
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[5] Unfortunately, very few observational data are avail-
able on the propagation and evolution of structures in the
solar wind as they travel between the Sun and Earth.
Currently, Interplanetary Scintillation (IPS) measurements
made by looking at the propagation of radio waves from
distant sources through structures in the solar wind are the
only constant source of such data. In the very near future,
however, the Solar Mass Ejection Imager (SMEI) has the
potential to greatly improve the quantity of this type of data
through the use of polar-orbiting, white-light cameras which
will detect CMEs and other dense structures in the solar
wind out to and beyond 1 AU [Webb et al., 2002].
[6] Previous studies of solar wind forecast skill have been

performed [Smith et al., 2000; Fry et al., 2001; Sun et al.,
2002; Thomson, 2000]. The present study differs from these
in that it focuses only on the HAF model forecasts made in
the year 2001, includes forecasted and observed shocks
associated with sector transitions and other corotating
interaction regions (CIRs), and applies a different set of
skill scores to the analysis, with particular emphasis on
those that determine forecast value from the user’s perspec-
tive. These skill scores are discussed in section 2. Details of
the data used, including the HAF model forecasts and shock
observations are given in section 3. The analysis and
conclusions are given in sections 4 and 5, respectively.

2. Forecast Skill Measures

[7] Although traditional measures of forecast skill used by
the meteorological community are applicable to solar wind
shock forecasting, there are aspects of the problem that
distinguish it from conventional weather forecasting appli-
cations. Furthermore, since the quality and quantity of space
weather forecasts have traditionally been marginal (at best)
for many applications where critical decisions must be made,
a brief discussion of the skill of space weather forecasts from
the point of view of the end-user is warranted here.
[8] Consider the hypothetical example of a satellite oper-

ator that has the power to shut down and stow an on-orbit
instrument that is sensitive to solar wind shocks or their
associated energetic particles. With reference to Figure 1,

assume that at some time, T0, an X-ray flare, and a coincident
optical flare are observed in the western hemisphere of the
Sun and an initial velocity is determined through an analysis
of a Type II radio burst that is also observed near the same
time. These events trigger a special run of a solar wind
forecast model. At a somewhat later time, TFA, the results of
this forecast are made available to the user community,
including the satellite operator. The forecast calls for a shock
to arrive in the vicinity of Earth at a future time, TFSAT. On the
basis of an analysis of the past performance of the forecast
model (such as provided in the present work), a shock arrival
time window, �TSAT is also provided to the end users.
[9] Now, at some time during the period between TFA and

the beginning of the shock arrival window, TFSAT��TSAT/2,
the user must make a decision to either stow the instrument
for protection or to keep it online despite the forecast. One
unique aspect of the shock arrival time problem is that
there may be no further updates of the forecast in the
intervening time, since no additional observations of the
shock may be available as it propagates through interplan-
etary space. (In the future this condition may be improved
through the assimilation of data from, e.g., the Solar Mass
Ejection Imager, STEREO, or Interplanetary Scintillation
measurements.) Assume that the user weighs his options
and decides to stow the instrument at time Tstart = TFSAT �
�TSAT /2. Furthermore, he programs the instrument to
come back online at the end of the time window, given
by Tend = TFSAT + �TSAT/2.
[10] If a shock arrives at Earth during the period fore-

casted shock arrival time window, then the forecast is a
‘‘hit’’ and a potential catastrophe is averted. If, however, no
shock is observed, the forecast is a ‘‘miss’’ (specifically, a
false alarm) and the satellite operator suffers a loss due the
unnecessary downtime of the instrument. If the expected
shock arrives at some time outside of the window, the
forecast also fails and the operator may again suffer a loss
due to instrument damage.
[11] From this point of view it is clear that for a space

weather forecast to be of value, several things must hold: a
high rate of forecast hits, a low rate of misses (both false
alarms and unforecasted events), a small hit window, and

Figure 1. Hypothetical shock arrival forecast timeline.

SSH 9 - 2 MOZER AND BRIGGS: SKILL IN REAL-TIME SOLAR WIND SHOCK FORECASTING



sufficient lead time of forecasts. It is the purpose of the
present work to evaluate the HAF solar wind model in terms
of all of these criteria, keeping in mind that the costs of each
criteria may be different for each end user of the forecast.
[12] Meteorologists have gauged the utility of various

weather forecasts using a wide variety of metrics, or skill
scores, which relate predicted quantities to those actually
observed [c.f., Wilks, 1995]. The particular skill score used
to evaluate a forecast should always be chosen to best
represent the actual use of a forecast. For example, dichot-
omous, or ‘‘yes/no’’ forecasts of a discrete predictand,
which is the case for forecasts of solar wind shock arrival
(the shock will or will not occur in a given time window),
lend themselves to a description in the form of a 2 � 2
contingency table (see Figure 2).
[13] A contingency table relates events that are predicted

to those observed. The goal of any forecast system is to
maximize the number of forecast ‘‘hits’’ (the prediction
agrees with observation, whether the event occurred or not)
and minimize the number of ‘‘misses’’ (which can be either
a predicted event that was not observed or an observed
event which was not predicted). A complete description of
commonly used skill scores is given by Wilks [1995] and
only a brief outline is given here.
[14] The simplest skill score that can be derived from a

2 � 2 contingency table is the hit rate which gives the
proportion of correct forecasts,

H ¼ n11 þ n00

n
; ð1Þ

where n�ij = nij. This metric is useful when correct positive
and negative forecasts hits are of equal value. A hit rate of 1
represents a perfect forecasting system and the worst
possible hit rate is 0. A frequently used alternative to hit
rate is the so-called threat score,

TS ¼ n11

n11 þ n01 þ n10
; ð2Þ

which is particularly useful in cases where the occurrence of
events is much less frequent than nonoccurrence (which is

the case in solar wind shocks). The interpretation of threat
score is that it expresses the ratio of events correctly
forecasted to those that were either forecasted or observed.
In this way, correct null forecasts are removed. Again, the
best threat score is 1 and the worst is 0.
[15] Similarly, the ratio of the number of occasions that an

event occurs to the number of times that it was forecast is
captured by the Probability of Detection (POD),

POD ¼ n11

n11 þ n01
: ð3Þ

As with the H, and TS, a perfect forecast is represented by
POD of unity.
[16] The effect of forecasted events that are not observed

is quantified by the false-alarm rate,

FAR ¼ n01

ðn01 þ n11Þ
: ð4Þ

In this case, a FAR = 0 is the best possible forecast and
FAR = 1 is the worst.
[17] A global measure of a forecast system is given by the

bias,

B ¼ n11 þ n01

n11 þ n10
; ð5Þ

which simply is the ratio of the total number of yes forecasts
to yes observations, whether or not the observations and
forecasts agree. Bias is used to determine if a forecast
system is consistently over or under forecasting events. A
bias value of 1 is the ideal.
[18] The standard skill scores represented by equations

(1)–(4) are useful as broad indicators of the performance of
a particular forecast system; however, the value of a hit or
the severity of a miss in a forecast depends heavily on how
the forecast is being used. For example, as discussed in the
hypothetical example above, if the action taken by a satellite
operator is to shut down systems when an event is fore-
casted, he may be very sensitive to false alarms due to
unnecessary losses in satellite uptime. On the other hand, a
large scale power blackout caused by ground-induced
currents associated with an unforecasted event may be more
critical to long-haul power line operators.
[19] A novel forecast skill score that incorporates the

cost to the user of incorrect forecasts has been proposed by
W. M. Briggs and D. Ruppert (personal communication,
2002, hereafter referred to as BR). This work generalizes
that of Thomson [2000] and is outlined in Appendix A,
who first applied decision analytic techniques to space
weather forecasts. Here, we extend the work of Thomson
by allowing the forecast user to calculate and to assess the
statistical significance of a simple economic skill score. We
also introduce new graphical methods that can be used in
assessing forecast skill (see Schervish [1989] and Wilks
[2001] for examples of graphical skill assessment).
[20] The BR skill score is given by

Kq ¼
n11ð1� qÞ � n01q
ðn11 þ n10Þð1� qÞ ; ð6Þ

Figure 2. 2 � 2 contingency table and associated loss
table (denoted by cij).
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where q is a measure of loss given by

q ¼ c01

c01 þ c10
; ð7Þ

where c01 is the cost of a false positive forecast, and c10 is
the cost of a false negative forecast. These costs are
dependent on the assessment made by the user of the
forecast. Since different decision makers may assign
different values to these quantities, the utility of a forecast,
as measured by this skill score, may be different for
different users. Details of the use of this skill score are given
by W. M. Briggs and D. Ruppert (personal communication,
2002).

3. Data

3.1. Forecasted Events

[21] The HAF model produces forecasts of shocks and
their arrival time at the so-called Lagrangian 1, or L1 point
located roughly .01 AU sunward of the Earth. In recent
years the HAF has been run regularly as part of National
Oceanic and Atmospheric Administration/Space Environ-
ment Center (NOAA/SEC) unofficial ‘‘Fearless Forecast.’’
The model is run hourly to produce nominal forecasts of
ambient solar wind based on input boundary conditions
(e.g., the potential field source surface) up to forty days in
the future [c.f., Sun et al., 2002]. When a significant solar
event is observed, it is analyzed by researchers at NOAA/
SEC in order to determine inputs to the HAF model, such as
initial shock velocity, as described in section 1. These inputs
subsequently form the basis of forecasts of event-driven
transients in the solar wind.
[22] The basic output of HAF consists of solar wind

velocity and density (from which a dynamic ram pressure
can be computed) and interplanetary magnetic field compo-
nents. A Shock Searching Index [Fry et al., 2001] given by

SSIH ¼ log
�P

Pmin

ð8Þ

where P is either the dynamic pressure or the momentum
flux, �P is a change in P, and Pmin is the local minimum of
P over a window of time steps. Shocks are identified when
SSIH exceeds a given threshold, which is determined
empirically. For a given shock, the Shock Arrival Time
(SAT) is simply the time of the first occurrence of SSIH
greater than the specified threshold. For the present study, a
nominal threshold of �0.35 was chosen based on earlier
studies [Fry et al., 2003].
[23] Because the HAF model is run hourly and shocks

take roughly 3–5 days to propagate from the Sun to the
Earth, multiple forecasts of the same shock are frequently
produced by the system. The potential field source surface
that is used to provide the initial magnetic field boundary
conditions to the model can change over a period of days as
new observations are available. This leads to a potential
discontinuity in the model output which also must be
accounted for. To resolve the ambiguity in SAT due to
these two effects, we have chosen to select the shock
forecast that was made first after the solar events were
identified. From the perspective of a user of a space weather

forecast, this is equivalent to studying the forecast skill of
the longest lead-time forecast that can be produced.
[24] The list of the shocks forecasted by the HAF model

and distributed in real-time via e-mail to interested parties in
2001, with the longest lead time and SSI > �0.35 is given in
Table 1. Also shown in the table are the time (T0) and type of
the primary flare or radio bursts that were used as initial
inputs to the HAF model and that are believed to be
associated with the listed shock. Where an X-ray flare was
observed, its peak magnitude is given. Cases where only a
radio burst was observed are labeled as ‘‘Type II.’’ Shocks
which were not a result of any input other than the back-
ground potential source surface magnetic field are labeled as
Corotating Interaction Regions (CIRs). The time of the
initial forecast availability, (TFA) is also given in Table 1.

3.2. Observations

[25] Real-time (Level 1) data from the Solar Wind Elec-
tron, Proton, and Alpha Monitor (SWEPAM) and magne-
tometer (MAG) instruments aboard the Advanced
Composition Explorer (ACE) spacecraft, which is in solar
orbit at the L1 point, were used to identify shocks in the
solar wind. The SWEPAM and MAG instruments provide
measurements of the vector magnetic field at L1, as well as
proton radial velocity, density, and temperature at 1-min
intervals.
[26] Identifying disturbances based on measurements

from a single point in space is quite challenging due to
their complex (and largely unknown) morphological nature.
Shocks may arrive at L1 head-on, or the disturbance may
just graze that point as it heads off in a tangential direction.
Additionally, both forward and reverse (those developed
downstream) shocks may pass by. Furthermore, some
shocks, formed in the vicinity of L1, where the measure-
ments are made, may be transient and short-lived. To study
the event-driven shocks that are the focus of this study, it is
necessary to isolate them from these other phenomenon
using the measurements alone. This is often a somewhat
subjective process.
[27] Kartalev et al. [2002] describes an automated tech-

nique for identifying and classifying shocks from ACE
MAG and SWEPAM data using an objective MHD analy-
sis. In this analysis the time series measurements at L1 are
separated into upstream and downstream components. If a
fundamental change in the MHD characteristics between
these two components is observed, then a possible shock is
noted and further analysis determines the nature of the
shock (e.g., if it is a forward, reverse, or tangential shock,
its evolutionarity, and speed relative to the fundamental
plasma velocities).
[28] A total of 122 forward shocks were identified by the

Kartalev et al. [2002] process operating on ACE real-time
data for the period. Of these shocks, 24 were removed
during a manual inspection due to obvious improper shock
identification by the Kartalev et al. algorithm (mostly due to
erroneous input data). The remaining 98 shocks are listed by
their arrival time at L1 in Table 2.

4. Results

[29] Consistent with the timeline concept discussed in
section 2, we evaluate the skill of the HAF forecasts in
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terms of the hit window size, �TSAT, which will differ from
user to user. Table 3 shows the computed value of the skill
scores defined in equations (1)–(6) for �TSAT = 24, 36, 48,
60 and 72 hours. As can been seen in Table 3, the hit rate H
is greater than 60% for all hit window sizes with a trend
toward lower values of H as �TSAT increases. This is
consistent with the fact that H includes all of the correct
null forecasts (no shock forecast and no shock observed),
which decrease in number as the hit window size increases.
The threat score, TS, is relatively low, indicating little skill
for small �TSAT. However, TS > 0.50 for �TSAT > 48 hours.
Also consistent with intuition is the fact that the POD and
FAR metrics monotonically increase (decrease) with �TSAT
to indicate that the larger the hit window size, the more
likely it is to score a correct forecast. The bias, B, is close to
1 for all values of �TSAT.
[30] While H, TS, POD, FAR, and B are useful indicators

of forecast skill for comparing different forecast models (as

is done by Fry et al. [2003]) or for tracking long-term trends
in forecast performance, they are not particularly useful, by
themselves, to the end-user of a forecast because they do not
indicate whether the use of a forecast makes economic
sense. The Ksym = Kq=1/2 skill score, on the other hand,
shows the value of the forecast over the alternative optimal
naive forecast (the forecast based on the frequency of past
events, as described in Appendix A) for cases where the user
has a symmetric loss profile (hazard costs equals protection
costs). Table 3 shows that Ksym > 0 for only the 36, 48, and
60-hour hit windows. This indicates that users would be
better off not using the HAF forecasts if the requirement is
for a hit window less than 36 or greater than 60 hours.
[31] Figure 3 shows the value of the BR skill score, Kq, as

a function of the normalized cost, q, for the six hit window
periods considered. A value of Kq > 0 indicates that the
forecast has skill over the optimal naive forecast. A presen-
tation of Kq such as shown in this figure is illuminating

Table 1. Solar Wind Shock Arrival Times (TFSAT) From the HAF Model ‘‘Fearless Forecasts’’ for 2001a

TFSAT SSI TFA T0 Event TFSAT SSI TFA T0 Event

1 2/5/01 1100 0.77 2/4 2/3/01 0000 M2.4 45 8/12/01 1700 0.01 8/11/01 8/10/01 0136 C8.0
2 3/10/01 0600 0.12 3/8 3/8/01 1126 Type II 46 8/17/01 1400 �0.09 8/15/01 8/14/01 1242 C2.3
3 3/13/01 1100 �0.16 3/12 3/10/01 0409 Type II 47 8/23/01 2100 �0.21 8/20/01 CIR
4 3/18/01 0800 �0.08 3/17 3/15/01 2159 C1.9 48 8/25/01 1300 0.08 8/21/01 8/21/01 1024 C2.7
5 3/21/01 0900 �0.29 3/20 3/18/01 0852 C3.1 49 8/27/01 0900 0.23 8/27/01 8/25/01 1632 X5
6 3/24/01 0700 0.07 3/22 3/20/01 0240 M1.1 50 8/30/01 2200 0.47 8/28/01 8/28/01 1603 M1
7 3/25/01 0300 �0.15 3/22 3/20/01 2108 M1.5 51 9/1/01 0900 0.27 8/31/01 8/30/01 0147 C5
8 3/25/01 1800 �0.23 3/22 3/22/01 0822 M1.6 52 9/2/01 0500 0.24 9/1/01 8/31/01 1040 M1.6
9 3/26/01 0600 �0.13 3/25 3/24/01 0139 M1.2 53 9/3/01 0200 0.13 9/1/01 8/31/01 2243 M2.9
10 3/31/01 0300 �0.28 3/27 3/27/01 1632 M2.2 54 9/4/01 2200 �0.26 9/3/01 9/3/01 0158 C9.0
11 3/31/01 0100 0.04 3/30 3/28/01 1240 M4.3 55 9/5/01 1300 �0.34 9/4/01 9/3/01 1832 M2.5
12 4/1/01 2100 �0.02 3/30 3/29/01 1015 X1.7 56 9/8/01 0700 0.27 9/7/01 CIR
13 4/3/01 2200 0.6 4/2 3/31/01 1132 M2.1 57 9/9/01 2300 �0.07 9/7/01 CIR
14 4/12/01 0300 0.22 4/9 CIR 58 9/12/01 2200 0.09 9/11/01 9/9/01 1517 M3.4
15 4/11/01 0400 0.46 4/10 4/10/01 0513 X2.3 59 9/15/01 1500 �0.14 9/13/01 9/11/01 1346 C3.2
16 4/13/01 0800 0.04 4/11 4/9/01 1527 M7.9 60 9/16/01 0600 �0.33 9/13/01 9/12/01 2139 C9.6
17 4/15/01 0300 0.07 4/13 4/11/01 1317 M2.3 61 9/19/01 1600 �0.29 9/15/01 9/15/01 1129 M1.5
18 4/17/01 0600 �0.3 4/13 CIR 62 9/20/01 1500 0.79 9/18/01 9/17/01 0825 M1.5
19 4/21/01 0400 0.06 4/18 4/18/01 0217 C2.2 63 9/23/01 0700 �0.04 9/20/01 9/20/01 0507 C7.5
20 4/25/01 1200 �0.2 4/23 4/22/01 2042 M3.2 64 9/25/01 0200 0.06 9/23/01 9/22/01 0921 Type II
21 4/26/01 1600 0.21 4/27 CIR 65 9/26/01 1000 �0.05 9/25/01 9/24/01 1040 X2.6
22 4/28/01 1600 0.08 4/27 4/26/01 1335 Type II 66 9/30/01 2200 0.26 9/28/01 9/28/01 0830 M3.3
23 5/5/01 1100 �0.16 5/3 CIR 67 10/6/01 1300 0.34 10/2/01 CIR
24 5/6/01 0800 0.06 5/4 CIR 68 10/7/01 0700 �0.3 10/4/01 10/3/01 0647 C6.1
25 5/14/01 0800 �0.02 5/12 5/10/01 1504 Type II 69 10/12/01 0700 �0.16 10/9/01 10/9/01 0737 C7.0
26 5/16/01 0700 0.23 5/15 CIR 70 10/21/01 0600 �0.24 10/19/01 10/19/01 0101 X1.6
27 5/17/01 0100 �0.05 5/15 5/15/01 0300 M1.0 71 10/24/01 0800 0.42 10/22/01 10/22/01 0000 X1.2
28 5/20/01 0500 0.59 5/16 5/16/01 1555 Type II 72 10/27/01 1600 �0.13 10/25/01 10/25/01 1456 X1.3
29 5/22/01 0300 0.37 5/18 CIR 73 11/1/01 1900 �0.07 10/29/01 10/29/01 1113 M3
30 5/23/01 1600 �0.01 5/22 5/20/01 0624 Type II 74 11/6/01 1200 0.17 11/2/01 CIR
31 5/30/01 0600 �0.14 5/26 5/24/01 1940 M.12 75 11/13/01 1900 0.25 11/10/01 11/9/01 1837 M1.9
32 6/1/01 1100 0.12 5/30 CIR 76 11/21/01 1800 �0.08 11/18/01 11/17/01 0450 M2.8
33 6/2/01 1700 0.46 6/1 CIR 77 11/26/01 0800 0.43 11/22/01 11/22/01 2027 M3.8
34 6/7/01 0000 0.12 6/7 6/4/01 0000 Type II 78 12/1/01 0100 0.04 11/28/01 11/28/01 1636 M6.9
35 6/11/01 0700 �0.19 6/8 6/8/01 0000 C6.0 79 12/10/01 1300 0.06 12/7/01 CIR
36 6/14/01 2100 �0.2 6/12 6/11/01 0554 Type II 80 12/11/01 1100 0.21 12/9/01 12/9/01 0443 Type II
37 6/15/01 16:00 �0.14 6/13 6/12/01 0718 Type II 81 12/12/01 0600 �0.1 12/11/01 12/10/01 0940 C8.6
38 6/18/01 0100 �0.03 6/15 6/15/01 1007 M6.3 82 12/13/01 0300 0.33 12/11/01 12/11/01 0808 X2.8
39 6/26/01 2100 0.34 6/22 6/19/01 0335 C1.0 83 12/14/01 0100 0.39 12/10/01 CIR
40 7/3/01 1300 0.31 6/30 CIR 84 12/15/01 1300 �0.11 12/13/01 12/13/01 1429 X6.2
41 7/11/01 0000 �0.29 7/11 7/7/01 0330 C9.0 85 12/22/01 2100 �0.08 12/18/01 CIR
42 7/16/01 2100 �0.26 7/13 CIR 86 12/29/01 1200 �0.32 12/25/01 CIR
43 8/8/01 0500 0.43 8/8 CIR 87 12/28/01 0200 0.11 12/27/01 12/26/01 0502 M7.1
44 8/11/01 0700 0.06 8/10 8/9/01 0936 C3.7

aThis list only includes shocks with a Shock Searching Index (SSI) greater than �0.35. Where available, the time of the initiating solar event (T0) and its
type are listed. Those labeled ‘‘CIR’’ correspond to shocks associated with Corotating Interaction Regions that are independent of solar events. TFA
corresponds to the first time the shock forecast was available.
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because it allows the forecast user to determine the value of
a forecast based on the appropriate cost profile. A skill score
that is positive for q < 1/2 is useful for an application where
the hazard cost is higher than the protection cost (i.e.,
unforecasted events are more costly than false alarms).
The converse is true for q > 1/2.
[32] For the symmetric loss case (q = 1/2), positive skill

is indicated for �TSAT = 36, 48, and, 60 hours (consistent
with Table 3). Greater skill for each of these hit window
sizes is also apparent for nonsymmetric loss regimes. For
example, the 36-hour case shows the most skill at q = 0.37
and the 60-hour case peaks at q = 0.57. The shift of the
peak in these curves toward higher q for longer hit
windows is intuitively correct as one would expect that
as the hit window size is increased, the forecast is
increasingly conservative and fewer missed events are
expected at the cost of greater protection. In contrast to
Table 3, the 12, 24, and 72-hour hit window forecasts do
indeed show skill for various values of q. In these terms, a
figure such as Figure 3 allows decision makers not only to
determine the value of a forecast but also to determine the
proper forecast to request (in this case in terms of the hit
window size).

[33] The significance level of a given value of Kq can be
determined as is shown in BR. The null hypothesis is that
Kq � 0. The alternative hypothesis is that Kq > 0. The
appropriate test statistic developed in BR is for cases where
p � q is

Gq ¼ 2n11 log
r̂

q

� �
þ 2n01 log

1� r̂

1� q

� �
; ð9Þ

where

r̂ ¼ n11

n11 þ n01
:

Gq has a distribution related to the c2 distribution with one
degree of freedom. Tests are carried out similar to a standard
c1
2 test except that the p-value of the ordinary test must be

divided by 2 (W. M. Briggs and D. Ruppert, personal
communication, 2002); a regular test has that with an
observed g, P(G > g) = a; this test has that P(G > g) = a/2.
In practice, the user only has to double the regular c1

2 test
level to arrive at the correct level and then use an ordinary
c1
2 test. For example, if the user desires a test level a = 0.05,

Figure 3. BR forecast skill score, Kq, as a function of
normalized cost, q, for the six hit-window sizes considered.
The quadrant denoted by ‘‘I’’ indicates the region of skill for
applications where missed events are more costly than false
alarms. Quadrant ‘‘II’’ represents the opposite case.

Table 2. Forward Shock Arrival Times as Detected From Real

Time ACE Data by Kartalev’s Objective Algorithm

TOSAT TOSAT TOSAT

1 1/10/01 1523 42 6/21/01 1146 83 10/28/01 0236
2 1/18/01 0852 43 6/22/01 0820 84 10/31/01 1249
3 1/18/01 1129 44 6/23/01 1306 85 12/14/01 1239
4 1/23/01 1002 45 6/24/01 0907 86 12/15/01 1601
5 1/31/01 0723 46 6/25/01 1403 87 12/20/01 1757
6 2/20/01 0053 47 7/23/01 1106 88 12/23/01 2217
7 2/28/01 1324 48 8/2/01 1403 89 12/26/01 0642
8 3/3/01 1036 49 8/3/01 0623 90 12/26/01 0838
9 3/4/01 1156 50 8/9/01 2125 91 12/26/01 0855
10 3/4/01 2236 51 8/12/01 1047 92 12/26/01 0946
11 3/19/01 1026 52 8/14/01 1251 93 12/26/01 1140
12 3/22/01 1239 53 8/16/01 0250 94 12/26/01 1229
13 3/27/01 0108 54 8/16/01 0503 95 12/26/01 1335
14 3/28/01 1552 55 8/16/01 0852 96 12/26/01 1415
15 3/28/01 2257 56 8/16/01 1024 97 12/29/01 0442
16 3/30/01 2152 57 8/17/01 1010 98 12/30/01 1929
17 4/2/01 1945 58 8/17/01 1144
18 4/3/01 1723 59 8/17/01 1317
19 4/3/01 1829 60 8/18/01 0522
20 4/3/01 1903 61 8/22/01 2232
21 4/4/01 1421 62 8/27/01 1914
22 4/7/01 1655 63 8/30/01 1332
23 4/8/01 10:33 64 9/8/01 0520
24 4/10/01 0002 65 9/8/01 1410
25 4/10/01 0729 66 9/10/01 0129
26 4/11/01 1309 67 9/10/01 0243
27 4/16/01 0336 68 9/24/01 1611
28 4/17/01 2357 69 9/24/01 1703
29 4/21/01 1502 70 9/26/01 1400
30 4/28/01 0428 71 9/26/01 2335
31 5/1/01 1222 72 9/27/01 0839
32 5/12/01 1538 73 9/27/01 0937
33 5/15/01 0302 74 9/30/01 1847
34 5/18/01 0914 75 10/1/01 2142
35 5/19/01 0324 76 10/2/01 0225
36 5/19/01 0450 77 10/2/01 1145
37 5/30/01 1015 78 10/3/01 1944
38 6/7/01 0848 79 10/11/01 1613
39 6/17/01 0424 80 10/15/01 0734
40 6/18/01 2007 81 10/21/01 1813
41 6/19/01 1359 82 10/25/01 0806

Table 3. Conventional Skill Scores for the 2001 HAF Forecasted

Shock Arrival Times Versus the Kartalev Algorithm Applied to

ACE Realtime (Level 1) Dataa

�TSAT H TS POD FAR B K1/2

12 0.79 0.14 0.26 0.74 0.89 �0.42
24 0.67 0.23 0.37 0.63 1.00 �0.26
36 0.67 0.40 0.55 0.45 1.06 0.11
48 0.67 0.46 0.62 0.38 1.14 0.28
60 0.64 0.54 0.66 0.34 1.16 0.16
72 0.65 0.62 0.72 0.28 1.12 �0.22
aA K1/2 > 0 indicates skill.
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he doubles this and uses an ordinary c1
2 test with an a0 =

0.10. This is equivalent to dividing the p-value by 2.)
[34] Table 4 gives the p-value for each of the six

hit window sizes as a function of q. Blank entries in this
table indicate no skill over the optimal naive forecast (e.g.,
Kq � 0). A p-value near zero represents a case where one
can be relatively certain that the skill of the forecast relative
to the optimal naive forecast is significant and a value near
one indicates little certainty of significant skill. A typical
significance level would be represented by a p-value around
0.05.
[35] From the data presented in Table 4, it is apparent that

we may have confidence in the forecast skill that was
indicated in Figure 3 for various combinations of hit
window size and normalized cost. In general, the forecasts
corresponding to smaller �TSAT are significant for smaller
values of q. For the symmetric loss case, only the 48-hour
hit window forecast is significant at the 0.05 level. Both the
36 and 48-hour forecasts appear to have significant skill at
q = 0.4 (an application that is slightly more sensitive to
missed events than to false alarms). For q > 0.7, no
significant skill exists for any hit window size.

5. Conclusion

[36] The present analysis demonstrates that the current
version of the Hakamada-Akasofu-Fry kinematic solar wind
model demonstrates some positive skill for forecasting the
arrival time of shocks in the solar wind. More importantly,
however, we have demonstrated a new paradigm for evaluat-
ing forecast skill for the space weather community that
incorporates aspects of the particular application of the
forecast. By including the relative costs to the user of missed
forecasts, one is able to couch the relative benefits of using
the forecast, such as through the use of the Briggs-Ruppert
skill score presented here.
[37] The graphical methods and statistical testing of skill

introduced here will allow a wide range of decision makers
to easily use and interpret the solar shock forecasts.
[38] Future improvements to heliospheric forecast models

such as HAF, as well as improved observational data, such
as is expected from SMEI, offer the potential to greatly
improve the inherent skill in space weather forecasts and to
go beyond simple shock arrival time predictions to forecasts
of impacts on space-based and other sensitive systems.
Analysis of the value of these forecasts in terms of the
economic benefits associated with the specific application
of these forecasts, such as presented here, will be funda-

mental to their evaluation and eventual use in operational
contexts.

Appendix A: Briggs Ruppert Skill Score

A1. Definitions

[39] We are concerned with events Y which are dichoto-
mous. Predictions (which may be probabilistic) X 2 [0, 1]
are made for Y. In the two decision problem a decision
maker acts on X in one of two ways: he takes action d1 if he
believes Y will occur and d0 if he believes it will not.
Predictions can be either dichotomous or probabilistic, but
here we only consider decisions that are dichotomous. This
implies a transformation of a probabilistic prediction into an
eventual dichotomous one. In this work only the trans-
formed or purely dichotomous prediction is used. The
method of transformation is shown below.
[40] We follow the notation developed by Schervish

[1989]. Let Yi 2 {0, 1} designate the ith observation of a
dichotomous event; that is, Yi = 1 if the event occurs and
equals zero if it does not. Let the loss k associated with
making a correct decision equal 0. The loss k for making an
error can always be quantified such that when Y = 0 and the
decision was d1 it is q, which implies that when Y = 1 and
the decision was d0 the loss was 1 � q.
[41] The decision maker minimizes his loss and takes d1

whenever (the possibly probabilistic) expert forecast Xi 
 q
or takes d0 if Xi < q. The loss for any given forecast can be
now written as

ki ¼ qIðXi 
 q;Yi ¼ 0Þ þ ð1� qÞIðXi < q; Yi ¼ 1Þ: ðA1Þ

[42] Skill will be framed in terms of expected loss (risk).
In order for a collection of predictions to have skill, we
desire that its expected loss should be less than the expected
loss incurred by using the optimal naive predictions (typical
definitions of skill, for example by Wilks [1995], refer to
skill as relative accuracy of an expert to a naive forecast, a
distinction we will keep when developing the skill score
below). The naive information we have about Y is p, the
unconditional probability of occurrence, so that skill, if it
exists, is known as ‘‘climate’’ or ‘‘simple skill’’ to reflect the
idea that the expert forecast can beat the climatological or
simple forecast. The expected loss for a decision maker for a
collection of expert predictions is

EðkÞ ¼ E qIðX 
 q;Y ¼ 0Þ þ ð1� qÞIðX < q;Y ¼ 1Þð Þ
¼ qPðX 
 q; Y ¼ 0Þ þ ð1� qÞPðX < q; Y ¼ 1Þ
¼ qPð~X ¼ 1; Y ¼ 0Þ þ ð1� qÞPðX ¼ 0;Y ¼ 1Þ: ðA2Þ

The last step uses the fact that P(X 
 q, Y = 0) = P(~X = 1,
Y = 0), where ~X reflects the (possible) probabilistic
prediction transformed to a dichotomous one by the
decision maker. Unless otherwise indicated, the tilde shall
be dropped and it shall be assumed that the (transformed if
necessary) dichotomous predictions are used (this transfor-
mation differs from that of Mason [1979] whose goal was to
maximize the expected value of various scores that are
based on the forecast).
[43] Thus, let Xi 2 {0, 1} designate the ith prediction. Let

P(X = 1) = q, P(Y = 1) = p. Further let P(Y = 1jX = 1) = r and
P(Y = 1jX = 0) = s. We also assume that each observation Yi

Table 4. c1
2 p-Values Indicating the Statistical Significance of the

HAF Shock Arrival Time Forecasts Over a Range of Values of q
for All Six Hit Window Sizes Considereda

�TSAT q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7

12 0.18
24 0.21
36 0.00 0.00 0.37
48 0.70 0.04 0.0 0.0
60 1.00 0.21 0.01
72 0.65
aA low p-value indicates high significance in the skill of the HAF

forecast over the optimal naive forecast.
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is independent of each other Yj for i 6¼ j and that all of these
probabilities are unvarying for all i. We also assume that
cov(Yi, Xj) = 0 for i 6¼ j; that is, the forecast observation
process is not dynamic and that future observations do not
depend on past forecasts (for extensions to Markov Y see W.
M. Briggs and D. Rupert, personal communication, 2002).
[44] The expected loss for the optimal naive forecast

depends both on p and on the value of q. If p � q the
optimal naive forecast is XN = 0, where the superscript XN

denotes the naive forecast. This gives an expected loss of
p(1 � q). If p > q the optimal naive forecast is to always
answer XN = 1. The expected loss is (1� p)q. It is convenient
in what follows, but not necessary, to transform both the
observations and the loss so that the optimal naive prediction
is always XN = 0. The transformation is Y0= 1� Y, X0 = 1� X,
q0 = 1� q, which gives p0 = 1� p. The transformation, if any,
is only done to ensure p � q. This transformation simplifies
the presentation but does not change any results.

A2. Skill Test

[45] The null hypothesis for the skill test can now be
formed. It is

H EðkEÞ 
 EðkN Þ ðA3Þ

where kE corresponds to the loss of the expert prediction
and kN is the loss of the optimal naive prediction, and
expectation is taken over both forecasts and observations.
[46] Note that p = P(Y = 1, X = 1) + P(Y = 1, X = 0).

Substituting for the expected loss gives the null hypothesis

qP Y ¼ 0; X ¼ 1ð Þ þ 1� qð ÞP Y ¼ 1; X ¼ 0ð Þ 
 p 1� qð Þ

qPðY ¼ 0;X ¼ 1Þ 
 PðY ¼ 1;X ¼ 1Þð1� qÞ

q 
 PðY ¼ 1;X ¼ 1Þ
q

r � q

ðA4Þ

[47] The alternative is r > q (note that in those cases
where p > q and the user has opted not to recast the forecasts
and observations, the null translates to s 
 q).
[48] Assume, for the moment, that the loss is symmetric;

that is, q = 1/2. An alternative interpretation of skill requires
the probability that Y = XE exceeds the optimal naive
probability of Y = XN (or Y = 0), or, for the null,

H PðY ¼ X Þ � PðY ¼ 0Þ
rqþ ð1� sÞð1� qÞ � ð1� rÞqþ ð1� sÞð1� qÞ

r � 1=2:

This is identical to the original null with q = 1/2.
[49] The likelihood of the model, written in terms of r, s,

q, is

Lðr; s; qjY ;X Þ ¼
Yn
i¼1

qXið1� qÞ1�Xi r XiYið1� rÞXið1�YiÞ

� sð1�XiÞYið1� sÞð1�XiÞð1�YiÞ: ðA5Þ

The estimates for these parameters are found in the cell
counts of a 2 � 2 observation and prediction contingency
table shown in Figure 2.

[50] The unrestricted maximum likelihood estimates
(MLEs) are easily found as each parameter separates in
the likelihood:

bq ¼ n11 þ n01

n

br ¼ n11

n11 þ n01

bs ¼ n10

n10 þ n00
;

where n = �i�jnij. Under the null the MLE for q remains
unchanged as might be expected as it only involves the
unconditional mean of the forecast X. The null is that r � q,
maximized at r = q, and the estimate for s remains
unchanged. These facts makes calculation of the likelihood
ratio statistic (LRS) particularly simple as the terms
involving q and s drop out, leaving only the terms
involving r.
[51] The LRS, G, is

G ¼ �2 log
qbr

� �n11 1� q
1�br

� �n01
� �

¼ 2n11 log
br
q

� �
þ 2n01 log

1�br
ð1� qÞ

� �
:

As a practical matter, when making calculations with real
data the often used condition 0log(0) = 0 is invoked.
[52] G has an asymptotic distribution which is related to

the c2 distribution with one degree of freedom. Since the
test is one-sided the actual distribution is 1/2c1

2 + 1/2op(1)
[Cox and Hinkley, 1974]. Tests are carried out similar to a
standard c1

2 test, except that where a normal c1
2 statistic W

has that P(W > w) = a, here because there is a probability
mass of 1/2 at 0, the c1

2 statistic G has that P(G > w) = a/2.
In practice, the user only has to double his chosen test level
and use an ordinary c1

2 distribution.

A3. Skill Score

[53] Those interested in forecast evaluation typically want
not only to know whether a collection of forecasts has been
skillful, but they would also like to attach a number or score
that measures this skill. This is useful, for example, in
tracking skill for a system of forecasts over time or for
comparing forecasts made for similar events. Skill scores
are in widespread use in the meteorological community
[Wilks, 1995; Kryzysztofowicz, 1992]. Normally, skill scores
K take a form such as the following:

Kðy; xÞ ¼ Sðy; xN Þ � Sðy; xEÞ
Sðy; xN Þ ; ðA6Þ

where S(y, xN) is an error score for a collection of naive
forecasts, and S(y, xE) is the same error score for a collection
of expert forecasts. The divisor is there to ‘‘normalize’’ the
error scores so that rough comparisons can be made
between skill scores received across different situations.
Scores of the type of equation (A6) are not proper [Winkler,
1996]. A proper score is one in which Ep(K(y, p)) 

Ep(K(y, x)), and reflects the idea that the forecaster can only
maximize his score by forecasting his true feeling
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[Hendrickson and Buehler, 1971]. Winkler shows a proper
score related to equation (A6) is K(y, x) = S(y, xN) � S(y, xE);
however, this loses the desirable normalizing quality of
equation (A6). Scores in the form of equation (A6) are in
widespread use, and the departure from properness does not
do much harm here (in the sense that a forecaster will find it
difficult if not impossible to manipulate the eventual skill
score to his advantage, and Murphy [1973] has also shown
that skill scores of this form are approximately proper for
large samples).
[54] The difficulty with skill scores has traditionally been

that the sampling distribution of the skill score was
unknown making hypothesis testing impossible. However,
in our case testing the significance a skill score is the same
as the normal skill test if the following skill score is taken:

Kðy; xEÞ ¼ EðkðY ;XN ÞÞ � EðkðY ;XEÞÞ
EðkðY ;XN ÞÞ ; ðA7Þ

where the expected forecast loss is taken as the error score.
A collection of perfect expert forecasts will have a loss of 0,
so, for us, a perfect skill score will be K  1. A collection in
which no skill exists will have either an expected loss the
same as the naive forecasts or even greater so that the skill
score will be 0 or less. The null hypothesis is

H K � 0: ðA8Þ

It can be easily seen that this translates exactly to the
hypothesis and test used before.
[55] An estimate for the skill score is

bKq ¼
bpð1� qÞ � qð1�brÞbq� ð1� qÞbsð1� bqÞbpð1� qÞ

¼ ðbr � qÞbqbpð1� qÞ

¼ n11ð1� qÞ � n01q
ðn11 þ n10Þð1� qÞ : ðA9Þ
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