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ABSTRACT

The most commonly used measures for verifying forecasts or simulations of continuous variables are root-
mean-squared error (rmse) and anomaly correlation. Some disadvantages of these measures are demonstrated.
Existing assessment systems for categorical forecasts are discussed briefly. An alternative unbiased verification
measure is developed, known as the linear error in probability space (LEPS) score. The LEPS score may be
used to assess forecasts of both continuous and categorical variables and has some advantages over rmse and
anomaly correlation. The properties of the version of LEPS discussed here are reviewed and compared with an
earlier form of LEPS. A skill-score version of LEPS may be used to obtain an overall measure of the skill of a
number of forecasts. This skill score is biased, but the bias is negligible if the number of effectively independent
forecasts or simulations is large. Some examples are given in which the LEPS skill score is compared with rmse

and anomaly correlation.

1. Introduction

When assessing climate model simulations or pre-
dictions of fields of continuous variables such as sur-
face pressure, the most commonly used measures of
skill are root-mean-squared error (rmse) and anomaly
correlation. These measures are related and each has
disadvantages that are discussed in this paper. There
are a number of existing systems for assessing forecasts
that are given in the form of a number of categories
whose prior probabilities are known. The aim of the
linear error in probability space (LEPS) score is to pro-
vide a score that may be used to assess forecasts of
both continuous and categorical variables and that does
not have some of the problems associated with other
scoring systems, such as rmse and anomaly correlation.
This paper develops the LEPS scoring system intro-
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duced by Ward and Folland (1991) by deriving a new
normalization method for the scores. Some important
properties, of the new scores are shown to be a marked
improvement over the original LEPS scores. It is de-
sirable to convert scores into measures of percentage
skill. The behavior and limitations of skill scores based
on LEPS are discussed, and some examples are given
that are compared to standard and anomaly correlation.

2. Measures of similarity between meteorological
fields

Letx;,i = 1---n, denote a set of n observed values
of a variable and y;, i = 1- - - n, denote the correspond-
ing forecast values. Then the mean-squared error
(MSE) is defined as

1 n
MSE = - Y (a—y)?,

i=1

(1)

and rmse is the square root of this quantity.
The standard correlation coefficient in basic form is
given by
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where x and y are the sample means of the observations
and forecasts, respectively. Alternatively, the mean of
the observed data may be subtracted from both the ob-
servations and the forecasts:

Y

(x —X)(: ~ %)

i=1

(S -5 5 (-5
=1 i=1

r,=

(2b)

In the case of time series at a single point, for which
averaging over the entire series gives the climatological
average at the point, r, is the anomaly correlation co-
efficient. The following relationship exists between r,
and r, (e.g., Ward and Folland 1991):

ry ( BIASZ>”2
—=(1+— .
r, sy
Here s2 is the variance of the forecasts and BIAS = y
- X.

Ifx;,i=1---n,andy;,i=1---n, are the observed
and forecast values of a variable at each of a set of grid
points, rather than time series of values at a single point,
then one of a number of alternative forms of correlation
coefficient is generally used. Since the climatological
average of variables generally differs between grid
points, often substantially, the ordinary correlation co-
efficient, in which the spatial means x and y are sub-
tracted, has an expected value for independent meteo-
rological fields that is greater than zero. To overcome
this problem, the correlation coefficient can be calcu-
lated between the observed and forecast anomalies
from climatological means obtained by averaging his-
torical data, rather than between the actual values of
the variable, giving

(2¢)

r.=—; (2d)
[ (-8 —x+0)°
i=1
XIS (yi—f -+
i=1
and
'2 (xi_Ei—f"‘E)()’i_Ei_}T'*'C_’)
rh="5 . (2e)

™

(x =& —F+0)

i=1

X2 (y—¢&~-y+2)1"”
i=1

i=
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Here ¢;, i = 1---n, are the climatological mean ob-
served values of the variable at each grid point, f;, i
=1---n, are the corresponding climatological mean
forecast values, and ¢ and f are the spatial means of ¢;
and f;, respectively.

The correlation coefficients ! and r/ are unable to
detect systematic differences due to the addition of the
same constant to the forecast value at each grid point.
To overcome this, two different forms of correlation
coefficient, in which the spatial means are not sub-
tracted, are commonly used for comparing meteorolog-
ical fields. The first form is analogous to the standard
correlation coefficient r,, but each observed value is
referred to the climatological mean observed value
rather than to the mean of the data, and each model
forecast value is referred to the climatological mean
forecast value:

El (x; — ;) "f_;')

ry=

7 - . (2D
[2(x—¢) 2 (v —f)1"7
i=1 i=1

In the remainder of the paper, when referring to me-
teorological fields, r | is called the standard correlation.
Alternatively, both observations and forecasts are sub-
tracted from the observed climatological mean at each
grid point (Miyakoda et al. 1972):

e

(x; —c)yi —¢:)
ra=—— "

[2(x—-¢)*2 (v~ Ei)Z]”Z.
i=1 i=)

(2g)

When meteorological fields are being compared, r; is
often called the anomaly correlation.

Standard correlation has the disadvantage that no ac-
count is taken of any systematic differences between
the variance of the forecasts and that of the observa-
tions: multiplication of the forecast anomaly at each
grid point by the same scale factor has no effect on the
correlation coefficient. Anomaly correlation is affected
by the variance of the forecasts in a complex way that
depends on the size of the bias. The anomaly correla-
tion coefficient also has the disadvantage that it is very
sensitive to small differences between the forecasts and
the observations when both are near the observed cli-
matological average. Similar problems also arise for
other forms of correlation when the denominator in the
correlation coefficient is close to zero. Consider a com-
parison of a meteorological field with one that has been
produced by perturbing the same data without bias.
Suppose that y; = x; + e;, where ¢; is a set of random
variables with mean zero and variance o2, which are
distributed independently of the original anomalies x;
— ¢;. Let U denote the numerator in (2g) and V denote
the square of the denominator. Then, treating the orig-
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inal anomalies x; — ¢; as fixed, the expectations of U A similar result may be obtained for anomaly correla-

and V are

E[U] = En‘, (x; — Ei)z

i=1
E[V]= En: (x — C',-)z[ﬁ‘. (x; — €:)* + noll.
i=1 i=1

As a rough approximation, the expectation of the
anomaly correlation r, is given by

E U ~ E[U]
Vl/2 (E[V])IIZ

~

1

(1 +nol/Z (x; — ;)1
i=1

Thus, the expected value of r depends not only on
o2 but also on the sum of the squared differences be-
tween the observations and the corresponding clima-
tological averages. If this sum is close to zero, then
ri is close to zero even if o2 is small. On the other
hand, the expected value of the MSE in this case is
o2 regardless of the values of the observations.

Murphy (1988 ) demonstrated the following relation-
ship between MSE and r,:

MSE = BIAS? + 52 + 5} — 25,57,
where

1"
si==3Y (5, —x)* and 2=
n

i=1 i

S |-
M

(y: — )7)2~

1

il

By similar reasoning, Murphy and Epstein (1989) ob-
tained
MSE = BIAS? + 5. + 5% — 2s/s)r),

where
n
siP==Y (x;,—C;i—x+¢C)*

i=1

M =

and 5% = (yi—¢ —y+0)

1
n i

1

For our definition of standard correlation in (2f) we
can define

17 _ n_Lls S
s;'2=;Z(x,-_Ci)2 and syf2=;z(y‘_ﬁ)2'
i=1

i=1
For a meteorological field, the bias varies between each
grid point. Defining the local bias as BIAS, = (f;
— C;), we have

MSE = s%? + 537 — 25y s);r? — BIAS?

+ 'r27 Z (y, - x,')BIAS,'. (3a)

i=1

tion; this does not include bias terms:
MSE = s/ + s)> — 2sus)ro, (3b)

where
an = l i (y — 5)2
y n = i il -

Rmse scores have the disadvantage that they can be
reduced by damping the forecasts (Barnston 1992).
For example, letz;,i = 1- - - n, denote a set of forecasts.
Consider modified forecasts of the form

yi=az; + (1 —a)g. 4

"2 2,12 " _ _n
and r}, = rj,, where

For these forecasts s,° = a”s;

1 n
s’z,2 = Z (zi — Ei)za
i=1

S

n

(- e -6

n _ i=

xy = n n B
[2 (x — C_'i)2 Z(y— C_'})z]llz
i=1 i=1

r

Hence, from (3b)
MSE = s%% + a%s?% — 2ar!,s"s?,

which is minimized by setting

a="rL. (5)

sZ

If 5% and s; are of similar magnitude, then « is approx-
imately equal to r,. Thus, the expected rmse may be
reduced by using this unskilled strategy. However, as-
suming that the original forecasts came from a popu-
lation with the same distribution as the observations,
these modified forecasts will be, on average, less real-
istic than the original ones because they will be taken
from a distribution that has a smaller variance than that
of the observations.

Skill scores are often constructed by taking some
measure of accuracy of the forecast and comparing it
with that of a corresponding reference forecast. For
MSE with observed climatology as a reference fore-
cast, a skill score (SS) may be constructed as follows:

B MSE(x, y)
MSE(x,c)’
where MSE (x, y) and MSE(x, c) are the MSE between

the forecasts and the observations and between the cli-
matic averages and the observations, respectively.

SS =
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Murphy (1988) gives a decomposition of SS that in-
volves r? as well as (r — s,/5,)?, which is a measure
of the conditional bias, and (X — ¥)?/s2, which is a
measure of the unconditional bias. Murphy and Epstein
(1989) give a similar decomposition based on r . The
following result may also be obtained:

SS_ "2 __ rr_f_g 2
=T, ra e )
X

However, if the strategy given in (4) and (5) for re-
ducing the MSE is adopted, then the conditional bias
is eliminated and SS reduces to r%2.

3. Existing assessment systems for categorical
forecasts

Forecasts of temperature and precipitation are fre-
quently given in terms of equally probable categories,
for example, corresponding to below, near, and above
normal. Various scoring systems exist for categorical
forecasts. The Heidke score (Heidke 1926) is defined
as (H — E)/(N — E), where H is the number of fore-
casts of the correct category, N is the total number of
forecasts, and E is the number of forecasts of the correct
category that would be expected by chance in the ab-
sence of any forecasting skill. This score is insensitive
to the magnitude of errors, when there are more than
two categories, although it is possible to modify the
score to allow for different classes of error (Barnston
1992).

The Sutcliffe score (Freeman 1967) does penalize
errors according to their severity and has the property
that the expected score is zero if an unskilled forecast-
ing strategy is used, such as always forecasting the
same category or selecting a category at random; it is
therefore equitable (Gandin and Murphy 1992). How-
ever, the Sutcliffe score does not have the property that
the expected score is the same for each observed cat-
egory. So this score can vary according to the fluctua-
tions in recent climate and can give a false impression
of skill, since it tends to give a slightly higher score
during a run of near-average conditions than during a
run of extremes. We shall describe scores that have
both the property where the expected score is the same
for a constant forecast of any category and the property
where the expected score is the same for each observed
category as ‘‘doubly equitable.”’ The Folland—Painting
(FP) scores (Folland et al. 1986) are doubly equitable
and are based on the negative logarithm of the distance
between the forecast and the observation, measured in
the cumulative probability distribution of the observa-
tions. This quantity is normalized to create a doubly
equitable scoring system. A problem associated with
the FP system is that it can ‘‘bend back.”” Thus, when
the number of equiprobable categories is increased to
eight or more, scores for maximally incorrect forecasts
can be slightly less negative than those for less erro-
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neous forecasts. So, for octiles, if the first octile is ob-
served, the score for a forecast of the seventh octile is
—2.165, while that for a forecast of the eighth octile is
only —2.151.

4. Aim of LEPS

The LEPS score aims to provide a doubly equitable
scoring system that does not bend back and that may
be used to assess long-range forecasts on a common
basis, as well as to assess the skill in simulating or
forecasting meteorological fields. The forecasts to be
assessed may be either best estimates of a single value
of a variable from a continuous distribution or best es-
timates of one of a set of predefined categories. The FP
system can only assess forecasts issued in discrete cat-
egories as it becomes undefined when continuous vari-
ables are forecast. Thus, if the forecast and the obser-
vation occupy the same point in the cumulative prob-
ability distribution, their distance apart is zero and the
nonnormalized FP score is —log(0) and infinite. It is
useful to have a method of relating the ‘‘skill’’ of mul-
tiple regression forecasts of a single ‘‘best estimate’’
value, taken from a continuous distribution, to that of
a forecast of a discrete category derived from the same
value. A score that can assess forecasts of continuous
variables can also assess climate model simulations or
predictions of fields of continuous variables such as
surface pressure. It may sometimes be more appropriate
to measure the errors of such simulations according to
their errors in the climatological probability distribu-
tion, as done by LEPS, than by using rmse or correla-
tion. LEPS penalizes errors in the simulation of an ex-
cessively low surface pressure less than would rmse,
but gives a greater relative penalty to a small error in
a near-normal pressure simulation. Unlike correlation,
LEPS also penalizes errors in the distance between the
forecast and the observation. So within the rather dif-
ferent framework of the cumulative probability distri-
bution, it combines the useful characteristics of rmse
and correlation.

The LEPS scores of Ward and Folland (1991 ) suffer
from a bending back problem, like the FP score, when
many categories are used. This becomes most acute for
continuous variables as this condition corresponds to
an infinite number of categories. A better form of LEPS
is needed, therefore, for continuous variables. Scores
for categorical forecasts can then easily be obtained by
finding the expected score averaged over all values in
each pair of forecast and observation categories.

One score that is doubly equitable and that does not
bend back for continuous variables is a form of the
Gringorten score (Gringorten 1965) defined as

~In[P,(1 - P)] -1 if P,>P,
~In[(1 - P,)P,]—1 if P,<P,

where Py is the cumulative distribution function of the
forecast and P, is the cumulative distribution function
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of the observation. However, LEPS aims to provide a
scoring system that has a simpler and more intuitive
basis as, in its basic form, it measures the error in a
forecast according to the distance between the position
of the forecast and the corresponding observation in
units of their respective cumulative probability distri-
butions.

S. Derivation of LEPS

The first part of the derivation follows the appendix
of Ward and Folland (1991), except that a perfect fore-
cast is given a score of a rather than a score of unity.
For imperfect forecasts, a is reduced by a penalty equal
to the modulus of the difference between the position
of the observation in the cumulative probability distri-
bution P, and that of the forecast P;: P, and P; are
fractions with a lowest possible value of zero and high-
est value of unity. The score S, has the form

va=a_|Pf_Pv|7 (6a)

where Sy, is normalized relative to chance to give an
equitable score S, so that the chance score is zero for
any forecast or observation. The normalizing factor is
the product of the averages of all possible scores for
the given forecast S; and all possible scores for the
given observation S, divided by the grand mean score

S, Thus, the normalized score S’ is given by

55,
S

St =8 — (6b)

In the continuous case this is

1 1
f S,vdP.,f S;,dP;
0

]

1 1
f f S, dP,dP,
0 vYo

Evaluating the first of these integrals, we obtain

Sj'"v= va_

1 Py=P;
f S.dP, = f [a — (P, — P,)]dP,
0

P,=0
P,=1 1
+f [a—(P,— P)ldP, = a - + P;— P}
P=P;
Similarly,
1
f SpdP;=a— 3+ P, — P

0

The grand mean of Sy, over all forecasts and observa-
tions is given by

1 1
f f S;,dP,dP,
0 vo
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This gives a normalized LEPS score:
S},,=a— |Pf_PvI
1 1
<a—5+Pf—Pf2>(a—5+P,,—P3>
(6¢)

)

From now onward, explicit use of the subscript fv will
be dropped from S’.

As mentioned above, Ward and Folland (1991) use
a = 1, but this form of LEPS suffers from the disad-
vantage of bending back for large numbers of catego-
ries. To ensure that S’ does not bend back, we require

oS’ s’
> < f 1 P> P
oP. 0 and op, 0 forall P, ;
and
oS’ as’
< > < P,.
oP, 0 and oP, 0 forall P;<P,

Consider the case P, > P,. Differentiating we obtain

(a —%+ P - P}’-)(l —2P)
as’

o, ' T 1
a 3

>0

(7a)

and
(a—l+Pv—P§)(l —2P))
, 2
3_5' -1 - <0
P, a1 '
3
(7b)

Suppose that P, = 0. Then in order to satisfy (7a) when
P; = 0.5 we require

)

1- VALY > 0, (8)
(=-3)
and to satisfy (7a) when P; = 1 we require
gl
2
l1—-————>0 9)

There is no finite value of a that simultaneously satis-
fies (8) and (9). Similar problems occur with Eq. (7b).
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TABLE 1. LEPS §” scored for terces.
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TasLE 2. LEPS S” scores for quints.

Observation Observation
Forecast T1 T2 T3 Forecast Q1 Q2 Q3 Q4 Qs
T1 0.89 —0.11 -0.78 Q1 1.28 0.52 —-0.20 —-0.68 —-0.92
T2 -0.11 0.22 -0.11 Q2 0.52 0.56 0.04 -0.44 —0.68
T3 —0.78 —-0.11 0.89 Q3 -0.20 0.04 0.32 0.04 . -0.20
Q4 —0.68 -0.44 0.04 0.56 0.52
Q5 -0.92 —0.68 -0.20 0.52 1.28

We therefore let a = ». Set P2 — P, + 1/ = A, and
P} — P+ 1/ = A, in (6¢):-

S'=a_ |Pf_Pv‘
—1
- (a2 - aAl - aAz + AlAz)(a — %) .
For large a,
S'Na~' |Pf_Pv|
—~(a? —aA, — aA, + AIAZ)(a“ + %a‘z) .

Letting a — c we obtain a new score:

S'=1-|P,—P,| + P}

—g+P&—m~§.(m)
The partial derivatives of this score are, for P, > P,,
CAN oS’
=2P,> d —=-2+2P
oP. , >0 an oP, » < 0, (11a)
and for P < P,,
08’ a8’

=-2+2P, <0 and ——=2P;>0. (11b)

OP;

We call these two conditions the two states of Py rela-
tive to P,. Thus, this form of LEPS score does not
change the sign of its gradient for a given state and
satisfies the conditions that ensures that it does not bend
back. The score in (10) can be seen from (6a) to be
the LEPS score obtained using a = 1 as in Ward and
Folland (1991) but with the new normalization

S'=8-8§-85+§

instead of that given in (6b).

From (10), the expected value of the score of a con-
tinuous variable for a correct forecast averaged over all
equal values of Pyand P, is 1/3. To produce a score with
an expected value of 1 similarly calculated, this score
needs to be multiplied by three. The revised, normal-
ized, LEPS score, S”, is therefore defined as

S"=3(1— |P;— P, +P2—P;+ P2~ P,)— 1.
(12)

oP,

(11c)

We call this the revised LEPS score, but the word
““revised’’ will be dropped for the remainder of the
paper. Note from (11a) and (11b) that the rate at
which §” changes with P, asymptotically approaches
zero for both P, = 0 and 1, independently of the value
of P;.

Tlfle scores for forecasts issued in discrete categories
are obtained by calculating the expected score for each
combination of observed and forecast categories. For
forecasts issued in discrete categories, the mean score
for all categories for a high level of skill tends to in-
crease as the number of categories increases. Thus, the
average score for correct categories is 0.5 for two equi-
probable categories, for terces it is 2/3, and for quints
itis 0.8. In general, for n categories, the average LEPS
score for correct categories is 1 — 1/n. Table 1 shows

20f;

S"

FiG. 1. The LEPS $” score as a function of P, for values
of P;at intervals of 0.1 between 0.0 and 0.5.
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all scores for terces, rounded to two decimal places,
while Table 2 shows the scores for quints.

6. Properties of LEPS

Figure 1 shows how $” varies with P, for P; = 0,
0.1, 0.2, 0.3, 0.4, and 0.5. The curves for P; > 0.5 are
mirror images of those for P, < 0.5. The maximum
score, which occurs when Py = P, =0or P,=P, =1,
is 2, while the minimum score, which occurs when P;
=0and P,=1lor P,=1and P, = 0, is —1. The score
for a correct forecast of a value near the center of the
distribution is much less than that for a correct forecast
of an extreme value. Because S” is doubly equitable,
the score is symmetrical so that the score for P, = A
and P, = B is the same as that for P, = Band P, = A.

Given one of the states P, > P, or P; < P,, the partial
derivative of the score with respect to P, depends only
on P,. Hence the curves in Fig. 1 are parallel. As a
consequence, provided that the state of P, does not
change, the change in S” that occurs as a result of a
given change in P, is the same regardless of the value
of P;. This effect is visible in Table 2.

The variance of S” for a random forecast and a given
observation in the continuous case is, from (12),

P, L
f (3P} + 3P2 - 6P, + 2)?dP, + f (3P} + 3P2
0 Py

— 6P, + 2)*dP; = 4(=3P% + 6P} — 3P2 + 0.2).

The overall variance of S” for random forecasts and
observations is

1
I 4(-3Pi+ 6P} —3P2 +0.2)dP,=04.
0

For rmse, the expected score is increased by issuing
forecasts with a lower variance than the observations,
but for LEPS the opposite is true. Here, S” was derived
in such a way that if the forecasts and the observations
are independent, then the expected score is zero re-
gardless of the variance of the forecasts. If forecasts are
perfect, the maximum possible score is obtained where
the variance of the forecasts is the same as that of the
observations. However, if, as is usually the case, there
is a positive correlation between the forecasts and the
observations but the forecasts are not perfect, then, as-
suming that the same probability distribution is used
for the forecasts as for the observations, the expected
score can be slightly increased by issuing forecasts with
a higher variance than the observations.

Suppose that the observations come from a normal
distribution with zero mean and unit variance, that the
population correlation coefficient between the forecasts
and the observations is p, and that the forecasts also
have a similar normal distribution but multiplied by a
scale factor of o. Then for a given observation x, the
forecast has a normal distribution with mean opx and
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variance ¢?(1 — p?). A close approximation to the
expected score for values of p at intervals of 0.1 and
for o between 0 and 10 was obtained using the scores
for 100 equiprobable categories. For each observed cat-
egory, the conditional probability that the forecast lay
in each category was calculated given that x lay at the
midpoint of the observed category. Since the observa-
tion is equally likely to occur in any of the 100 cate-
gories, the probability of each combination of observed
and forecast categories was obtained by dividing each
conditional probability by 100. These probabilities
were multiplied by the corresponding LEPS scores and
added to give the expected score shown in Fig. 2. The
differences between the maximum score and the score
for o = 1 are in general quite small. Although the op-
timal value of o is very large for small values of p, as
o is increased the expected score becomes almost con-
stant. This relatively small problem can be overcome
by calculating the cumulative probability distribution
of the forecasts and referring the forecasts to this dis-
tribution in order to reflect the larger variance of the
forecasts compared to the observations. Equivalently,
the forecast and observed values can be standardized
by their respective standard deviations if the distribu-
tions are normal. This is readily done for model sim-
ulations for instance.

7. Estimating percentage ‘skill”’

It is desirable to have a measure of overall skill over
arange from 100% to —100%. The problem is to devise

08t =10

SII

FiG. 2. The expected LEPS S” score when the standard deviation
of the forecasts o is between 0 and 10, the observations have a stan-
dard deviation of 1, and the forecasts are assumed to have the same
distribution function as the observations. The population correlation
coefficient between the forecasts and the observations p takes values
at intervals of 0.1 between 0.1 and 1.0.



JANUARY 1996 POTTS

TaBLE 3. LEPS SK percentage skill terce table for a single forecast
and a single observation.

Observation
Forecast T1 T2 T3 Mean
Ti 100.00 —100.00 —-100.00 —33.33
T2 —14.29 100.00 —-14.33 23.81
T3 —100.00 —100.00 100.00 —33.33
Mean -4.76 —33.33 -4.76 —-14.29

a technique that, as far as possible, does not lose the
equitable character of the LEPS scores. A method is
developed that succeeds for practical purposes as long
as a sufficiently large ensemble of forecasts is assessed
together. To achieve a skill range from 100% to
—100%, average skill (SK) is defined for continuous,
categorical, and probability forecasts as

_ =100S8”
oz s

where the summation is over all pairs of forecasts and
observations. The definition of S}, depends on whether
the numerator is positive or negative. If it is positive,
S}, is the sum of the maximum possible scores given
the observations, that is, the scores assuming all the
forecasts were correct, because 100% skill is logically
the result of forecasting the same category or value as
is subsequently observed. If the numerator is negative,
S is the sum of the moduli of the worst possible scores
given the observations. [The transformation in (13)
was also used by Folland et al. (1986) to provide per-
centage skill scores for the FP scoring system.] For
continuous forecasts, S, is readily calculated from
(12) for positive values of S” by setting P, = P;. For
negative values, for a given P,, the largest negative
score is found from the value of P; that is furthest away
from P, in the cumulative probability distribution. This
will be the value of S” corresponding to P; = 1 or P;
=0.

For a single forecast, SK is certainly not equitable.
Consider the S” scores for terces (Table 1). Average
skill involves dividing the score by the maximum pos-
sible score, given the observation, if S” is positive, and

SK (13)

ET AL. 41

by the modulus of the minimum possible score, given
the observation, if S” is negative. Table 3 shows the
resulting table for a single forecast. The expected mean
skill for the whole table is —14.29%. The expected
value of SK is 23.81% for a single forecast of terce 2
and —33.33% for a single observation of terce 2. Table
4 gives comparable values for quints. The overall ex-
pected skill score for quints is —4.58%, which is less
negative than the expected score for terces.

Consider the expected value of SK aggregated over
a pair of independent forecasts. For example, consider
pairs of forecasts of terce 2. There are nine possible
pairs of observations, each with equal probability.
These are listed in Table S, together with the corre-
sponding values of SK. The average expected SK is
9.2% for the aggregate of two forecasts of terce 2,
which is less than half the bias of 23.9% for one fore-
cast. For aggregated pairs of observations of terce 2, a
similar calculation (Table 6) gives a negative bias of
—22.2%, two-thirds of the bias of —33.3% for a single
observation of terce 2. The initial bias in SK for other
categories declines in the same way.

To illustrate the behavior of SK as the number of
forecasts increases further, simulations were carried out
for selected numbers of aggregated independent fore-
casts between 1 and 400. In each case, 100 000 simu-
lations were carried out, as the standard deviation of
SK values is very high compared to their means. Thus,
for a constant forecast of terce 3, observations were
randomly made of terces 1, 2, and 3. The mean per-
centage biases obtained are given below, together with
their standard errors, which are shown in parentheses.
The biases in SK for a single forecast and for constant
forecasts of terce 1 or 3 and constant forecasts of terce
2 are calculated to be —33.38% (0.30) and 23.78%
(0.17), respectively, which are close to their theoretical
values of —33.33% and 23.81%; for 5 forecasts they
are —6.08% (0.16) and 2.16% (0.05); by 25 forecasts
the biases reduce to —1.89% (0.07) and 0.16% (0.02);
by 100 forecasts to —0.95% (0.04) and —0.06%
(0.01); by 400 forecasts biases are —0.41% (0.02) and
—0.05% (<0.01). These results are displayed graphi-
cally in Fig. 3a. For constant forecasts of quint 1 or
quint 5, quint 2 or quint 4, and quint 3 the biases for a
single forecast are —21.24% (0.30), 3.01% (0.21), and

TasLE 4. LEPS SK percentage skill quint table for a single forecast and a single observation.

Observation
Forecast Q1 Q2 Q3 Q4 Q5 Mean
Q1 100.00 92.86 —100.00 —-100.00 —100.00 -2143
Q2 40.63 100.00 12.50 —-64.71 —-73.91 2.90
Q3 -21.74 7.14 100.00 7.14 -21.74 14.16
Q4 —73.91 -64.71 12.50 100.00 40.63 2.90
Q5 —-100.00 -100.00 —100.00 92.86 100.00 —-21.43
Mean —-11.01 7.06 -15.00 7.06 -11.01 ~4.58
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TaBLE 5. SK for pairs of forecasts of terce 2.

Combinations of

terces observed  Numerator Denominator SK (%)
1and 1 —-0.22 1.56 -14.10
1 and 2 0.11 1.11 991
1and 3 —-0.22 1.56 —14.10
2and 1 0.11 1.11 9.91
2 and 2 0.44 0.44 100.00
2and 3 0.11 1.11 9.91
3and 1 -0.22 1.56 -14.10
3 and 2 0.11 1.11 9.91
3and 3 -0.22 1.56 -14.10

Mean SK = 9.25%

14.18% (0.14), respectively; for 5 forecasts they are
—5.23% (0.15), —1.20% (0.10), and 1.77% (0.04);
for 25 forecasts they are —1.72% (0.07), 0.72%
(0.04), and 0.10% (0.02); for 100 forecasts they are
-0.79% (0.03), —0.41% (0.02), and —0.06% (0.01);
and for 400 forecasts they are —0.37% (0.02), —0.21%
(0.01), and —0.07% (<0.01). These results are shown
in Fig. 3b. Thus, SK tends quickly at first, and then
slowly, to zero as the number of forecasts rises. This is
also seen for persistently observed terces or quints, al-
though the detailed behavior for persistently observed
categories is not the same as for persistently forecast
categories.

Simulations were also carried out for terces, quints,
and for continuous variables for the situation when both
forecasts and observations are randomly sampled. The
biases obtained for a single forecast were —14.25%
(0.28), —4.49% (0.25), and —7.30% (0.21) for terces,
quints, and continuous variables, respectively; for 5
forecasts they were —3.20% (0.13), —2.24% (0.12),
and —3.72% (0.10); for 25 forecasts they were
—1.29% (0.06), —1.09% (0.05), and —1.62% (0.05);
for 100 forecasts they were —0.68% (0.03), —0.54%
(0.03), and —0.81% (0.02); and for 400 forecasts they
were —0.34% (0.01), —0.26% (0.01), and —0.44%
(0.01). These results are shown in Fig. 3c.

TABLE 6. SK for pairs of observations of terce 2.

Combinations of

terces observed Numerator Denominator SK %
land 1 —-0.22 0.22 —-100
1 and 2 0.11 0.44 25
1and 3 -0.22 0.22 —100
2and 1 0.11 0.44 25
2 and 2 0.44 0.44 100
2 and 3 0.11 0.44 25
3and 1 -0.22 0.22 —-100
3and 2 0.11 0.44 25
3and 3 -0.22 0.22 -100

Mean SK = —22.22%
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For about 20 or more independent forecasts, biases
in SK can usually be neglected and even for five in-
dependent forecasts biases may often not be serious.
However, SK scores are not suitable for single forecasts
as they are insufficiently equitable and the overall neg-
ative bias is rather large.

8. Some comparisons between the LEPS skill score
and other measures

Figure 4a shows the relation between SK and the
population correlation coefficient in a similar way to
Fig. 2. The differences between the maximum LEPS
score and that for ¢ = 1 are again in general quite small,
and zero for perfect correlation. Figure 4b shows SK
plotted against r] for ¢ = 1 for 2000 simulated, inde-
pendent pairs of fields consisting of three independent
points. Also shown is the mean line obtained by sim-
ulating 10 000 pairs of dependent fields consisting of
500 independent points for various selected population
correlation coefficients between the fields. Intermediate
values were obtained by interpolation. The precise po-
sition of the mean line will depend to a small extent on
the number of independent points in each field as SK
is biased for small numbers of such points. In the case
of 500 points the bias is negligible, but the actual av-
erage curve for three independent points differs slightly
from the curve shown. The scatter will depend on the
number of independent points, or, in the case of spa-
tially correlated fields, on the equivalent number of in-
dependent points. Thus, for simulations of fields of 50
independent points (not shown) the scatter is much less
about the mean line with no values near +1. Note that
if we define the equivalent number of independent
points N as the number of independent points for which
a statistic has the same variance as for a spatially cor-
related field of n points, then, for the mean, the equiv-
alent number of independent points is given by

. n
1+ (n—- )7

where 7 is the average correlation of every grid point
with every other grid point (Parker et al. 1992). How-
ever, for the standard correlation coefficient r;, the fol-
lowing approximation to N is obtained (see appendix):

New— M
T4 (n—1Dr?’

where r? is the average of the squares of the correla-
tions between all pairs of points.

Some advantages of LEPS over anomaly correlation
and rmse are shown next. Figure 5a shows a hypothet-
ical field of climatological average values of half-
monthly mean sea level pressure over a 5 X 6 grid. In
the following calculations of LEPS skill scores it was
assumed that the forecasts and observations are nor-
mally distributed with means given by these climato-
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logical averages and a standard deviation of 9 mb at
each grid point. Suppose that Fig. 5b represents an ob-
served pattern over this grid and Fig. 5c represents the
corresponding forecast pattern. The anomaly correla-
tion between these two patterns is 0.69, the rmse is

6.41, and the LEPS skill score is 35%.

The sum of the squared differences between the ob-
servations and the climatological averages is approxi-
mately equal to that between the forecasts and the cli-

matological averages for these two patterns. Damped
forecasts y; were therefore formed as follows (Fig.

5d):
y! = 0.69y; + 0315,

where y;, i = 1- - -30, are the original forecasts at each
grid point. Comparing these damped forecasts with the
observations, the anomaly correlation remains the
same; the rmse reduces to 5.44, implying that the
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FiG. 4. (a) The expected LEPS skill when the standard deviation of the forecasts o is between 0 and 10: the observations have a standard
deviation of 1 and the forecasts are assumed to have the same distribution function as the observations. The population correlation coefficient
between the forecasts and the observations p takes values at intervals of 0.1 between 0.1 and 1.0. (b) Simulated values of LEPS skill versus
standard correlation r{, where observations and forecasts have equal standard deviations, for fields consisting of three equivalently independent
values, together with the mean line for fields containing a large number of independent values.

damped forecast is better than the original one; and the
LEPS skill score is 30%, implying that the damped
forecast is slightly worse than the original one. Visual
inspection of the patterns suggests that the damped
forecast is probably not quite as good as the original
one because it underestimates the intensity of the high
pressure region.

Now suppose that the observed and forecast anom-
alies are each multiplied by a scale factor of 0.1, so that
the new observations (Fig. 5¢) x/ are given by

x! =09¢ + 0.1x;,

where x;, i = 1- - - 30, are the original observations and
the new forecasts (Fig. 5f) y! are given by

yi =09¢; + 0.1y,.

Because all the observed and forecast anomalies have
been multiplied by the same scale factor, the anomaly
correlation is still only 0.69 even though these two pat-
terns are very similar. The increased skill is, however,
reflected in both the rmse, which has fallen to 0.64, and
the LEPS skill score, which has risen to 85%.

9, LEPS and correlation scores for several climate
model simulations

We first study a time series of simulated and ob-
served data for northeast Brazil where the skill is rel-
atively high. LEPS scores and LEPS skill are compared
with r, and r,. LEPS skill and anomaly and standard
correlation are then compared for gridpoint simulations

where the skill is very low. Finally we compare simu-
lated and observed global fields of seasonal rainfall
where the skill is very variable. In all cases we use
continuous distributions of both the observed and mod-
eled data.

a. Northeast Brazil rainfall time series

We first compare observed rainfall in northeast Bra-
zil in 1949—-85 during the March—May wet season with
that simulated by the atmospheric part of the Hadley
Centre 19-level 2.5° latitude X 3.75° longitude climate
model. The Hadley Centre model is a component of the
UK. Meteorological Office unified climate and
weather forecasting model (Cullen 1993). Note that
observed data after 1985 are too sparse to analyze. The
model was forced with observed sea surface tempera-
ture and sea ice extent from the Meteorological Office
Global Sea Ice and Sea Surface Temperature dataset
(D. E. Parker 1992, personal communication). The
model was run four times for this period, forced with
the same time-varying sea surface temperature and sea
ice extent data, but restarted from four different sets of
initial atmospheric conditions appropriate to 1 October
(taken from recent years). The initial ocean surface
data were always those for 1 October 1948. Since the
predictability of the atmosphere from the initial atmo-
spheric conditions alone is only about two weeks, any
common signals in the integrations averaged over any
specific period of time after the first two weeks must
come from the ocean surface data or variations in other
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FiG. 5. Hypothetical half-monthly average mean sea level pressure. (a) Climatological average. (b) Observed pattern. (c) Forecast pattern.
(d) Damped forecast pattern. (¢) Observed pattern close to the climatological average. (f) Forecast pattern close to the climatological average.
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boundary conditions, like calculated soil moisture, that
result from the influence of the ocean surface data on
the model atmosphere. The remaining differences be-
tween the runs are due to the unpredictable internal
variability of the model. If the ocean surface fields have
a strong influence, however, the unpredictable com-
ponent will be quite small. Northeast Brazil is expected
to be an area where the ocean surface temperature has
a strong influence on climate, particularly rainfall, on
timescales of three months or more. A large empirical
influence of sea surface temperature on the northeast
Brazil wet season rainfall is shown by Ward and Fol-
land (1991). The observed rainfall time series is an
average of values estimated for two grid boxes 2.5°
latitude X 3.75° longitude centered at 3.75°S,
39.375°W and 6.25°S, 39.375°W. Model grid boxes
have the same size but are offset by half a grid box, so
corresponding values were obtained by averaging
model boxes centered on for 5.0°S, 37.5°W and 5.0°S,
41.25°W. The reason for the difference in the grids is
that the observed gridded data were created to match
the grid of a different climate model that was used at
the Hadley Centre until recently; regridded rainfall data
are not yet available. All modeled values are based on
the average of the ensemble of four runs.

Figure 6a shows the modeled and simulated rainfall
in millimeters, while Fig. 6b shows the same standard-
ized values, where standardization was done for the
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whole period and individually for each series. There is
a high value of r, = 0.87 between the simulated and
observed values in Fig. 6a, but the modeled data has a
much smaller o = 99 mm compared to the observed ¢
= 213 mm. There is also a bias of —143 mm in the
modeled compared with observed rainfall, the observed
mean being 581 mm. The rmse of the simulations is
136 mm, which is markedly larger than the simulated
standard deviation. Because of the bias and small sim-
ulated standard deviation, r, is reduced to 0.49 [Eq.
2c]. Standardization in Fig. 6b removes the bias, equal-
izes the standard deviations, and gives an rmse of only
0.51 standard units, that is, now only half the standard
deviation of the simulations. Also r; and r, both equal
0.87. Figure 6¢ shows the individual LEPS scores and
their corresponding maxima and minima for Figs. 6a
and 6b. Modeled and observed data in Fig. 6a are both
referred to the observed cumulative probability distri-
bution; corresponding LEPS scores are called LEP-
SOB. In Fig. 6b, scoring of the standardized modeled
data against the standardized distribution is effectively
the same as assessing it against the model’s own cu-
mulative probability distribution (the model and ob-
served distributions are insignificantly different from
normal ). These scores are called LEPSOBMD. Maxi-
mum and minimum LEPS scores in Fig. 6¢ depend only
on the position of the observation in the observed cu-
mulative probability distribution. This is the same for

(b) 3

2+

Standardized value

— Modelled
| = Observed

1985

1955 1965 1975

FiG. 6. (a) Modeled and observed northeast Brazil rain-
fall—absolute amounts. (b) As in (a) but standardized
amounts. (¢) LEPS scores for (a) and (b) with LEPS maxima
and minima.
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LEPSOB and LEPSOBMD because standardization of
the observed distribution in Fig. 6b is a linear transfor-
mation of that underlying Fig. 6a. The highest maxima
correspond to the most extreme observations, as ex-
pected from Fig. 1. The LEPSOB skill of 24.5% is
much less than the LEPSOBMD skill of 61.3%. The
former score would be the appropriate one to use when
considering the need to improve the ability of the model
to truly physically simulate northeast Brazil rainfall.
The latter is more appropriate for estimating the poten-
tial seasonal predictability of March—May northeast
Brazil rainfall as such standardized values can always
be calculated in advance of the rainfall season and re-
interpreted in terms of true expected rainfall. The dif-
ference in the two LEPS scores arises because many
modeled values in the LEPSOB calculation are low in
the observed cumulative probability distribution be-
cause of negative bias and low variance. Bias affects
both anomaly correlation and LEPSOB, but a reduced
standard deviation only influences anomaly correlation
if bias is present. This is emphasized by recalculating
Fig. 6a but with no bias. Both 7, and r, are again 0.87,
but the LEPSOB skill is 37.3%, still much below the
value of LEPSOBMD (61.3%). Thus, unlike anomaly
correlation, LEPS is sensitive to forecast variance in-
dependently of forecast bias. From Fig. 4a, the o value
as defined there is 0.46, and a correlation of 0.87 cor-
responds to a LEPSOB skill of about 40%, close to that
calculated.

Figure 6¢ shows the unbiased LEPS scores for each
simulation (LEPS skill is too biased for single fore-
casts). It can be seen that LEPSOBMD simulations for
1962 and 1982 were unskillful, and several other years
had poor skill even with the advantage of standardiza-
tion of modeled values. This kind of information is not
easy to obtain except in a cumulative probability frame-
work. Note that the high average LEPSOBMD skill is
due to the large weight given to scores for a correct or
near-correct simulation of an observed extreme. As Fig.
6c indicates, the extremes are mostly very well simu-
lated.

b. Gridded surface pressure fields in the North
Atlantic—European region (low skill case)

Here we compare observed and simulated fields for
a low-skill situation where the influence of the ocean
surface on simulated climate is low. Thus, we expect
- the internal nonlinear variability of the model to be
dominant. The same observed anomaly fields of two-
month average pressure at mean sea level (PMSL)
were compared between 1949 and 1990 with two of the
model runs used for Northeast Brazil simulations ex-
tended to 1990, giving 504 pairs of observed and sim-
ulated two-month average fields. Thus, the model was
restarted in the same way as in section 9a. Anomalies
were calculated from 1951 to 1980 averages. The re-
gion 65°-35°N, 40°W-20°E was chosen for this test
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as atmospheric variability here is only a little influenced
by SST (D. Rowell 1993, personal communication);
average skill is low, allowing a comparison of LEPS
and correlation in this situation. Each field was sampled
at 63 grid points to fit observed PMSL data on a 5°
latitude X 10° longitude grid. Simulations in the first
run were almost uncorrelated with those in the second
run, with little serial correlation, so time series of all
504 values were created where the second run follows
the first. Four types of correlation were looked at: r;,
rt, r?, and r/, together with three different ways of
calculating LEPS skill:

a. LEPSOB—model and observed PMSL data at a
grid point are referred to the observed cumulative prob-
ability distribution of PMSL for 1951-80 at that grid
point.

b. LEPSOBNB —as for LEPSOB but the mean dif-
ferences between the individual model grid point and
the observed values for 1951-80 (the local biases) are
removed.

c¢. LEPSOBMD—as for LEPSOB but model data at
each grid point are referred to the local model 1951 -
80 climatology.

For ready comparison with correlation, LEPS skills are
expressed on a fractional scale from —1 to +1 in the
remainder of section 9.

Table 7a shows the average and standard deviation
for all 504 values of the four types of correlation and
the three LEPS skill scores. Average LEPS skill scores
are (a) those for each field calculated separately using
Eq. (13) and (b) the grand average obtained by first
adding the LEPS scores for all grid points in the 504
fields before using Eq. (13) to calculate LEPS skill.
Calculation (a) gives a small negative bias near —3%
because of the small number of equivalently indepen-
dent grid points in individual model and observed fields
(see Fig. 3c). It can be seen that all LEPS skill scores
have mutually similar standard deviations that are sub-
stantially less than those for correlation. This can be
understood by referring to Figs. 4a and 4b, where for

TaBLE 7a. LEPS skill (expressed as a fraction) and correlation for
North Atlantic—European area two-month average PMSL anomaly
fields, 1949-1990.

Standard
Average deviation
ry 0.02 041
r, 0.03 0.37
ry 0.02 0.40
ry 0.02 0.38
LEPSOB (a) —0.01 0.28
(b) 0.02
LEPSOBNB(a) —0.01 0.28
(b) 0.02
LEPSOBMD(a) —0.02 0.29
(b) 0.01
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TaBLE 7b. Correlation between LEPS skills and correlation
measures for data in Table 7a.

LEPS skill r . rl ry ra
LEPSOB 0.75 0.75 0.80 0.89
LEPSOBNB 0.84 0.83 0.89 0.79
LEPSOBMD 0.75 0.74 0.81 0.76

large correlations the LEPS skill is less except for p
= 1, though very small LEPS and correlation scores
are similar and nominally identical for p = 0.

Table 7b shows standard correlations [Eq. (2a)] be-
tween the LEPS skill and correlation scores for the 504
individual fields, and Table 7c shows the correlation
between the different LEPS skill scores. The correla-
tions are generally high. The high correlation between

= and LEPSOB arises as in scction 9a because both
penallze local bias whereas ry does not. However, r/,
is not always less than r{; it can happen that the mod—
eled values for a specific ﬁeld of gridpoint values are
on average nearer the local observed climatologies
rather than the local model climatologies even if ap-
preciable longer-term biases occur. This contrasts with
ri and r/, where r/ is always equal to or less
than r;.

Figure 7a shows all 504 values of LEPSOB skill
plotted against r; (correlation = 0.80 from Table 7a).
The scatter, and therefore the correlation, depends
partly on the number of independent points equivalent
to the 63 grid points in the sense that the standard cor-
relation coefficient has the same variance. This is as-
sessed (see section 8 and appendix) to be close to 7
grid points. The simulated line is that calculated for Fig.
4b, so Fig. 7a is similar to Fig. 4b except that the scatter
is less because Fig. 4b assumed only three equivalently
independent points.

Figure 7b is a plot of LEPSOB skill and standard
correlation for 120 consecutive fields of the second run.
The main difference between the two measures is the
lack of values of LEPSOB above 0.5, partly compen-
sated by a lack of very negative values. This results
mostly from the relationship shown in Fig. 4a, where
for equal standard deviations of the observations and
the forecasts, a correlation of say 0.7 is expected to be
equivalent to an unbiased LEPS skill of about 0.47,
though with wide individual variations as indicated by
Fig. 4b. The arrowed pair [season 6 (November—De-
cember), 1967, second run] shows a particularly big
difference with 7 = 0.67 and LEPSOB = 0.07. The
corresponding anomaly correlation r/, = 0.17, so most
of the difference compared to the mean relationship in
Fig. 4a is due to large numbers of local biases. Thus,
the anomaly correlation and LEPSOB fit Fig. 4a quite
well. By contrast, in season 3 of 1976, r;, and r{ are
similar at 0.53 and 0.40, while LEPSOB is only 0.04.
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TABLE 7c¢. Intercorrelation between LEPS skills.

LEPSOB LEPSOBNB LEPSOBMD
LEPSOB 1 0.84 0.78
LEPSOBNB 1 0.86
LEPSOBMD 1

This largely arises because the standard deviations of
observed and modeled pressure vary systematically
over this late spring field. Relatively small absolute er-
rors in the southern part of the field have negative LEPS
scores (low standard deviations) and are treated on an
equal standardized basis with larger errors in the north.
However, in the correlation calculations larger positive
covariances in the north override generally smaller neg-
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FiG. 7. (a) LEPS skill LEPSOB (observations and modeled values
both referred to the observed cumulative probability distribution at
each grid point) vs standard correlation r;. LEPSOB skill is expressed
as a fraction. Scores for 504 cases, each consisting of 63 correlated
grid points of modeled and observed pressure at mean sea level in
the North Atlantic—European region, are shown. (b) Time series of
typical 120 consecutive values of LEPSOB vs standard correlation
ry.
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ative covariances in the south that are nevertheless cli-
matologically as important. This problem can be seen
from Egs. (2f) and (2g). Although the local climato-
logical average is allowed for, differences between
these and the local simulated values are lumped to-
gether, whereas LEPS effectively disaggregates the dif-
ferences and assesses their relative importance first.
This is clearly a further advantage of LEPS.

¢. Gridded global rainfall (strong geographical
variation in skill )

Finally we show for completeness some typical re-
sults that can be expected on a global scale, where the
model skill varies greatly geographically. We illustrate
only the bare results; further analysis will be completed
elsewhere. Figures 8a—d show maps of correlation and
LEPS skill for four simulations of seasonal mean rain-
fall for boreal spring (March—May) based on the 42
seasons in 1949-90. Each seasonal simulation was av-
eraged over the four runs. The observed data are ob-
servations over land only, derived from the latest ver-
sion of the Climatic Research Unit rainfall dataset
(Hulme 1992). Skill measures are standard correlation
r, and anomaly correlation r,, and LEPSOB and LEP-
SOBMD. Values are assessed on the model 2.5°
X 3.75° grid and the climatological averages and LEPS
cumulative distribution curves are calculated over
1949-90. The global mean skill at this space and time
resolution is very low (weighted average r, = 0.09, r,
= 0.05, LEPSOBMD = 0.03, and LEPSOB = 0.0),
but there is a very strong variation in skill geographi-
cally, even within the Tropics. The high LEPSOBMD
skill in northeast Brazil can be seen, together with the
strong sensitivity to the skill measure used as discussed
in section 9a. (The only other differences between
these results and those for Northeast Brazil in section
9a are the use of single grid boxes and that LEP-
SOBMD uses empirical distributions rather than nor-
mal distributions.) The global standard deviations in
skill are highest for r,, 0.21, but fairly similar for r,,
0.13; LEPSOB, 0.13; and LEPSOBMD, 0.12. Note that
local values of LEPS ensemble mean skill have very
little bias in the sense of Fig. 3c as they are calculated
from 42 seasonal values (expected bias near —1%).
The chief features are the systematically wider ranges
of r, than r, and of LEPSOBMD than LEPSOB. For
positive values of LEPSOBMD, values of LEPSOB are
always less. Note that this is only expected to be true
everywhere if the observed and modeled cumulative
probability distributions are calculated for the whole
period of the analysis, as here. As discussed above, the
LEPSOBMD values are more appropriate to assessing
the local utility of the model than LEPSOB, which bet-
ter assesses its absolute skill.

Figure 8e shows box and whisker plots of the four
skill measures based on values at each point that sum-
marize the basic differences between the four skill mea-
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sures as applied to such a typical global meteorological
field. This confirms the larger standard deviation of r,
than its LEPS equivalent, LEPSOBMD, which is also
deducible from Fig. 4a.

10. Conclusions

The LEPS score or skill score may be used to assess
forecasts of continuous and categorical variables, using
a common framework. It is doubly equitable and does
not suffer from the problem of bending back, which is
exhibited by some other scores of this kind. In this re-
spect, the score derived in this paper is an improvement
on the earlier form of LEPS discussed in Ward and
Folland (1991). Rmse can be reduced by damping
forecasts, while anomaly correlation remains the same
when forecast anomalies are multiplied by a constant
scale factor unless bias is present; the LEPS score is
independently sensitive to bias and forecast variance if
the latter is less than observed. This will most often be
the case in real forecasts or simulations, so LEPS has
advantages over both correlation measures. By defini-
tion, LEPS skill scores are less sensitive to outliers than
correlation but more sensitive to changes in values near
the center of the cumulative probability distribution.
The form of LEPS used here is slightly transformed
from the version used in Ward and Folland (1991),
which had the advantage that the basis of LEPS scores
was exactly equal to the linear error in probability
space. However, as tables of LEPS scores here and in
Ward and Folland show [compared in more detail in
Folland (1992)], the two forms of LEPS are very sim-
ilar numerically. So the LEPS scores derived here are
almost based on the ‘‘linear error in probability space.’’
LEPS scores can be used to assess the skill of individ-
ual forecasts or simulations, which correlation cannot
do for a univariate time series. This is particularly val-
uable for highlighting unskillful, or negatively skillful,
forecasts in time series that may not be immediately
obvious by inspection.

The skill score version of LEPS is quite easy to in-
terpret and enables a large number of forecasts to be
aggregated. For example, it may be used to assess the
percentage skill of forecasts of a meteorological field
that are made at grid points. This version of LEPS is
no longer equitable, but the bias reduces as the number
of independent forecasts increases and can be ignored
if the effective number of independent point forecasts
exceeds about 20, and is small for as few as five in-
dependent forecasts. A matter not dealt with in this pa-
per is the estimation of the statistical significance of
LEPS and LEPS skill scores. This will be discussed
elsewhere.

In this paper we have concentrated on LEPS
scores and emphasized their advantages over other
scores. However, we have also noted some draw-
backs, and it is clear that a ‘‘perfect’” score has yet
to be devised and may even be unattainable. Con-
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FiG. 8. (a) Standard correlation r, between mean modeled and mean observed rainfall for the March—May during 1949-
90 for areas with sufficient data coincident with the model 2.5° lat X 3.75° long grid. (b) As in (a) but for anomaly
correlation r,. (c) As in (a) but for LEPSOBMD skill expressed as a fraction. (d) As in (c) but for LEPSOB. (e) Box and
whisker plots of individual grid box values of r, and r,, LEPSOB skill and LEPSOBMD skill. The range in the box is *1
standard deviation of the skill score about its mean (central line), and the whisker measures the range between the largest
maximum and lowest minimum skill values.
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structing a score that avoids particular undesirable pute more than one score as, together, they may pro-
properties seems inevitably to introduce other prob- vide information that any one, alone, could not por-
lems. In many applications it is advisable to com- tray (Murphy 1991).
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APPENDIX

Estimation of the Equivalent Number of
Independent Points for the Correlation Coefficient
between Spatially Correlated Fields

Clifford and Richardson (1985) give an approxi-
mation to the variance of the correlation coefficient be-
tween two independent, normally distributed spatial
processes. The form of correlation coefficient that they
consider corresponds to r; as the sample means are
subtracted. It is assumed that the two processes have a
constant mean at each point. A similar expression is
now given for the variance of ry.

Let X — C denote the n X 1 vector with elements x;
—G,i=1---n,and Y — F denote the n X 1 vector
with elements y;, — f;, i = 1---n. Assume that X — C
and Y — F are multivariate normal vectors with mean
zero and covariance matrices Xx and Xy, respectively,
and that X — C and Y — F are independent. In vector
form

X-C)'(Y-F)
[(X-C)'(X-C)Y-F)(Y-F)]'""
Using the first-order Taylor approximation

U\ var(w)
var Vll2 E[V] ?

"o
ry =

we obtain

ElX-C)YY-FI)Y-F)'X-0)]

var(ry) ~

E[(X-C)'(X-OIEY -F) (Y - F)]
E[r(X-O)X-CO)'(Y-F)(Y -F)")]

E[u((X - C)(X - O))]E[tr((Y —F)(Y — F)")]

w{E[(X-O)X-C)IE(Y -F)(Y-F)']}

tr(3x y)

S HEIX - OX - O u(E(Y - B)(Y -F)]) | t(Sx) (S’

where tr is the trace of a matrix. If we assume that 3y
= ¥y = X and that the diagonal elements of X are all
equal (i.e., that the variance is the same at each grid
point), then (A1) simplifies to
1+ (n—1)r2
var(r"y ~ LE R Z DI

n
where r? is the average of the squares of the correla-
tions between all pairs of points. In the absence of any
spatial correlation

1

var(ry) =—.
n

(A1)

Thus, the following approximation to the equivalent
number of points N for ry{ is obtained:

n

New—D
1+((n-1)r?
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