Equatorial Scintillation Impact On GNSS Precise Positioning Services

MANUT - ---

Yahya Memarzadeh Fugro Intersite B.V.

NOAA Space Weather Workshop, 1-5 May 2017, Broomfield Colorado USA

Overview

Introduction to Fugro

GNSS Infrastructure Positioning Services

Space Weather Impact on GNSS Positioning

Ionospheric Disturbances Ionospheric Plasma Bubbles

Ionospheric Scintillation

Occurrence in Equatorial Region Fugro Scintillation Prediction Service

Summary

Fugro

GNSS Infrastructure

More than **150** Reference Stations in Multiple Network Configurations Using **8** Geostationary Satellite Channels

TUGRO

Fugro GNSS Positioning Services

SPACE WEATHER IMPACT ON GNSS

6 NOAA Space Weather Workshop, 4 May 2017, Broomfield Colorado

www.fugro.com

Space Weather Impact on GNSS

Space Weather Impact on GNSS Positioning (Range Error)

Note: White circles show the Fugro reference stations over the world

TEC Disturbances (Range Error)

Note: White circles show the Fugro reference stations over the world

(C) Created by Fugro Intersite B.V. (Leidschendam, The Netherlands)

EQUATORIAL SCINTILLATION

10 NOAA Space Weather Workshop, 4 May 2017, Broomfield Colorado

www.fugro.com

GNSS Signal Scintillation in Equatorial Region

Small-scale irregularities of ionospheric electron density in space (**Plasma bubbles**) causes GNSS signal scintillation.

Plasma bubbles is more common at **equatorial region**, Mostly evening after sunset, Seasonal variation, Bubbles increase during severe solar activity.

By the plasma bubbles, GNSS signal diffracted and refracted this leads to:

Amplitude Scintillation
Phase Scintillation

(C) Bath University

Due to ionospheric scintillation, GNSS receiver performance is degraded:

UGRE

- Signal power loss (likely Loss-of-Lock)
- Affects signal tracking
- Increase measurement noise

Typical GNSS Signal Scintillation

Amplitude Scintillation Impact

West Africa, Sao Tome (6th April 2015)

G2 Height Error (GPS+GLONASS)

Loose of satellites due to amplitude scintillation is the most severe cause

Loss of Lock Indicator graph (Amplitude Scintillation)

Tue 07 Apr 2015: L1/L2 Loss of Lock in Fugro GPS Network over 24 Hours Area: World

To mitigate: Use Multiple GNSS

Ionospheric Pierce Points for all satellites at the ionospheric height of 350 km (Mask=20°)

fugro

Scintillation Impact on Precise GNSS Positioning (G2+)

G2+ using GPS+GLONASS

L-Band Scintillation & Communication Outage

16 NOAA Space Weather Workshop, 4 May 2017, Broomfield Colorado

SCINTILLATION OCCURRENCE

17 NOAA Space Weather Workshop, 4 May 2017, Broomfield Colorado

The most affected sites by Scintillation (2014-2016)

UGRO

Seasonal Variation of Scintillations in Brazilian Sector

In **summer**, scintillation is **calm** and **no impact** on GNSS.

Recife (Brazil): Number of Scintillation Days

December

12

Seasonal Variation of Scintillations in West Africa

In **summer**, scintillation is **calm** and **less impact** on GNSS.

Abidjan (West Africa): Number of Scintillation Days

Occurrence of Scintillations in Brazilian Sector (2013-2017)

Occurrence of Scintillations in West Africa (2013–2017)

Significant reduction of scintillation toward solar minimum

ino

Sunspot

Updated 2017 An

UGRO

SCINTILLATIONS PREDICTION

23 NOAA Space Weather Workshop, 4 May 2017, Broomfield Colorado

www.fugro.com

Predictability of Equatorial Scintillation

Station: RECI (086), PRN 12, Wednesday 27 November 2013

Predictability of Equatorial Scintillation

Regional Scintillation Prediction, Brazil

Next 24h (Prediction)

Last 24h (Observation)

UT LT

SintMon v2.4. 08-Oct-2014

Regional Scintillation Prediction, Brazil (Animated)

ww.gif-animator.com - LINREGISTERE

UGRO

World Map of SDOP

fugRo

In the equatorial region, accuracy of predicted severe scintillation is ~70%

Fugro Scintillation Service (ScintStar)

Objective: Near real-time scintillation prediction (in time & space) for 24 ahead specific for a GNSS user location.

The service provides the following information:

- Scintillation status in the user working area,
- Start and end times of scintillation,
- GNSS satellites affected by scintillation,
- Risk of L-band communication outage.

Summary

GNSS data from a network of geodetic receivers are sufficient for detecting and monitoring ionospheric scintillations.

Equatorial Scintillations:

- Occurrence of scintillation significantly reduced towards **solar minimum**.
- Brazilian Sector and west Africa are the most affected regions.
- In Brazilian Sector and West Africa from May to August, scintillation is calm and no impact on GNSS.
- GPS only DGPS and PPP services may suffer from not having enough satellites due to amplitude Scintillation.
- Phase scintillation can be a limiter for GNSS precise services (e.g. G2+).

Fugro Scintillation Prediction Service:

- Product works for Fugro Offshore customers.
- Prediction of scintillations around equator (for 24h ahead) is ~70% accurate.
- Using **SDOP** for GNSS is highly valuable.
- New markets are Satellite Communication users (e.g. Iridium, Globalstar, Satcom).

iridium

Thanks for your attention

Yahya Memarzadeh GNSS R&D team Geodesist

Fugro Intersite B.V. Dillenburgsingel 69 Leidschendam 2263 HW The Netherlands

Y.Memarzadeh@fugro.com