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Industry Needs Long Duration Environments 
to Support Deep-Charging Assessments 

• Spec Requested by Users: “Industry Users Group, Model Requirements Update: The 
Oracle has Spoken,” Working Group Meeting on New Standard Radiation Belt and Space 
Plasma Models for Spacecraft Engineering, Oct 2004 (Ref. 1) 

 Design Issue #1: Endurability/Wear-out due to mission  

    total dose 

• Long-term average 

• Long-term worst-case 

• Flux energy spectra 

 Design Issue #2: Outages of rate-sensitive equipment 

• Examples: processors, CCDs (charge coupled devices) 

• Protons, electrons, heavy ions 

• Worst case 5 min, 1 hr, 1 day, 1 week 

 Design Issue #3: Deep charging  

• Falls between rate-sensitive (flux) and long-duration (fluence) 

• Worst-case day, week, month, 3 months, 6 months electron flux spectra 

• Access to historical flux data for anomaly resolution  

• AE9/AP9 Development Spec only shows time averages to 1 week 
duration and less (Ref. 2) 

• New environment model will have capability to generate longer term 
averages that meet industry needs (Ref. 3) 

The Oracle Has Spoken!
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Traditional Focus on Short Term Peak Flux 
Is Based on Correlation with Anomalies  

• Many spacecraft anomalies correlate with 
peaks in flux of energetic penetrating 
electrons 

• 10-hr average, 24-hr average and 48-hr 
average fluxes have been used in these 
correlation studies 

• NASA guidelines recommend limiting 
peak flux to a “safe” threshold, and 
provide a worst-case (several hour 
averaged) flux for GEO 

Correlation Is Not Causation & Does Not Support Design 

 
 

(Ref. 4) 

(Ref. 5) 

(Ref. 6) 
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Deep Charging Is Similar to R-C Circuit… 
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24 hour Averaged GOES >2MeV e- Flux in GEO 29-Jul-04, 9.25E+09

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

2
-J

u
n
-8

7

1
-J

u
n
-8

8

1
-J

u
n
-8

9

1
-J

u
n
-9

0

1
-J

u
n
-9

1

3
1
-M

a
y
-9

2

3
1
-M

a
y
-9

3

3
1
-M

a
y
-9

4

3
1
-M

a
y
-9

5

3
0
-M

a
y
-9

6

3
0
-M

a
y
-9

7

3
0
-M

a
y
-9

8

3
0
-M

a
y
-9

9

2
9
-M

a
y
-0

0

2
9
-M

a
y
-0

1

2
9
-M

a
y
-0

2

2
9
-M

a
y
-0

3

2
8
-M

a
y
-0

4

2
8
-M

a
y
-0

5

2
8
-M

a
y
-0

6

2
8
-M

a
y
-0

7

2
7
-M

a
y
-0

8

A
v

e
 F

lu
x

 [
e

-/
c

m
^

2
*
d

a
y

*
s

r
]

21.7 years of GOES >2MeV e- flux data

…But the Current Source Varies 
Orders of Magnitude on Time Scales 

of Days to 11-yr Solar Cycle 

GOES 24 hour averaged >2 MeV flux data courtesy of NOAA-Space Weather 
Prediction Center (Ref. 8) 

(Ref. 7) 
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ESD Risk Is Defined by Charge 
Accumulated Over Long-Time Scales 

GOES >2MeV e- Integrated Charge Density

29-Jul-04,
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2.8 yr tau

~300 day tau

~100 day tau

~30 day tau

~10 day tau

1 day

Daily 24-hr GOES >2MeV fluence data integrated by 

an RC circuit with time constant tau, then converted 

to charge density; updated to 22 Feb 09

17-Apr-95

22

18-Apr-95

39

15-Oct-95

249

12-May-95 

132

Q density responds 

quickly to spikes in 

e- flux for all time 

constants

More charge density is left when next storm 

begins, so Q density stair-steps to higher 

peaks for longer time constant materials

19-Apr-95

67

15-Mar-95

6.2
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Worst Case Depends upon Material Constants 
and Frequency of Storms, Not Just Peak Flux 

GOES >2MeV e- Integrated Charge Density

29-Jul-04,

 9.3
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~300 day tau

~100 day tau

~30 day tau

~10 day tau

1 day

Daily 24-hr GOES >2MeV fluence data integrated by an RC 

circuit with time constant tau, then converted to charge density 

A single very high flux peak 

can push up cumulative 

charge to high levels

Multiple recurring flux peaks 

can push up cumulative 

charge to high levels

Worst-case charge density 

is not always caused by 

worst-case peak flux
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Exponentially Smoothed Flux Provides Worst 
Case(s) for Deep Charging Assessments 

Exponentially Smoothed Time Averaged GOES >2MeV e- Flux

29-Jul-04, 
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1 day MA of 5 sec GOES data

~10 day tau

~30 day tau

~100 day tau

~300 day tau

2.8 yr tau

24-hr GOES >2MeV fluence data was integrated by an 

RC circuit with time constant tau, then averaged by tau 

to obtain an exponentially smoothed time-averaged flux

17-Apr-95
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2.48E+08
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Longer RC time 

constant results in 

lower worst-case 

time-averaged flux
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Tests Show Electrical Time Constants of 
Years-Supports Need for Long-Term Averages 

• New (Ref. 9) and old (Ref. 10) test 
data show electrical decay time 
constants > 1 yr for some materials  

Need W-C Flux Exponentially Smoothed Over Time Scales Matching 
Material Electrical Decay Time Constants 

 

Approx 
time 
constant  

Rho 

[-cm] 

Tau 

(r=1) 
[days] 

W-C 
Cum. 
Charge 
Density 
[nC/cm

2
] 

W-C Tau 
Averaged Flux 
[e-/cm

2
-sr-day] 

~3 3 E+18 3.07 13.4 4.34 E+09 

~10 1 E+19 10.25 22.0 2.13 E+09 

~30 3 E+19 30.74 38.8 1.26 E+09 

~100 1 E+20 102.5 66.6 6.46 E+08 

~300 3 E+20 307.4 132 4.26 E+08 

2.8 yrs 1 E+21 1025 249 2.42 E+08 

5.6 yrs 2 E+21 2050 342 1.66 E+08 

(Ref. 10) 

(Ref. 10) 
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Good Radiation Models Enable More Credible 
ESD Risk Assessments 

• From AE9/AP9 we expect to find (and thank you for it): 
1. “Clean” environment data sets over a wide range of energies spanning at least one solar 

cycle and preferably two 
2. Data sets integrated and exponentially smoothed over time periods of 1 week, 1 month, 3 

month, 6 months, 1 year, 2 years, 3 years   
3. Worst-case accumulated charge density and exponentially smoothed flux for the above 

averaging time periods (or the means to compute them from the data sets) 

• Satellite manufacturers will need to: 
1. Transport external environment into the spacecraft to define internal charging risk (NASA 

Handbook 4002, discusses ways to do this) 
2. Establish time constant of materials & pick appropriate W-C environment 

•NASA materials data base (another NASA/LWS supported effort - thank you) 
•Other historical test data 
•New tests using advanced non-contacting probe test methods 

• NASA Handbook 4002 will need to be updated to reflect new definition of worst-
case environment, and available material time constants 

• Some pieces of the puzzle are still missing 
• Adjustments for temperature (activation energy) and aging in space (change with time in 

vacuum and dose) are TBD at this time  
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