

Geomagnetic Precursors

□Utilize information from the declining phase of a cycle or from solar minimum to predict the intensity of the subsequent maximum

□Based in dynamo theory, whereby poloidal field of cycle N is converted into toroidal field of cycle N+1

☐ Historically, these techniques have provided the best skill at predicting the solar cycle.

LONGITUDINALLY AVERAGED MAGNETIC FIELD

Figure 1. A relation between the indexes of recurrent magnetic disturbances and Wolf's number $\mathbf{W}_{\mathbf{M}}$ in the maximum of the next ll-year cycle.

Courtesy D. Hathaway

Polar Field Precursor Methods

- ☐ A model calling for a small cycle short recycle time
 - ☐ Skip the 'proxy' (geomagnetic disturbances)

SODA =
$$60 + 146 \left[\left(\frac{B_{pol}}{1.28} \right)^2 + \left(\frac{F10.7 - 60}{146} \right)^2 \right]^{1/2}$$

Schatten and Pesnell (1993)

Here's what we started with

- Spectral (S) techniques include Fourier, Wavelet, and auto-regressive analyses
- Precursor (P) techniques look for leading indicators of solar activity

Do we have a winner?

The cycle peaked at 81.9 in April, 2014

	SSN	Timing	Author	Technique
	91.9	1/2011	Roth (2006)	Spectral
81.9	87.5	_	Duhau (2003)	Spectral
	80	2012	Baranovski (2006)	Spectral
	80	2012	Schatten (2005)	Precursor (polar fields)
	80	-	Choudhuri et al (2007)	Flux Transport Dynamo
	74	-	Javariah (2007)	Precursor (sunspot area)
	70	-	Svalgaard et al (2005)	Precursor (polar fields)
	70	12/2012	Kontor (2006)	Spectral

A Functional Form for the Cycle

Fitting the cycle with amplitude a, starting time t_0 , width b, and asymmetry c.

$$f(t;a,t_0,b,c) = \frac{a(t-t_0)^3}{\exp[(t-t_0)^2/b^2]-c}$$

Hathaway et al. 1994

Asymmetry is constant (c=0.71) and width varies with amplitude.

Therefore, we need only specify a start time (solar minimum) and a peak amplitude (maximum SSN).

Apply the Hathaway shape using actuals

- The purple curve, based on the observed maximum of 81.9 would predict the peak to occur in October, 2013
- Too early but within the prediction panel's error bar (±6 months)
- Fits the rise extremely well, 'misses the peak', but what about the declining phase?
 - Personally, I'm confident about the future.

But the forecast assumed one Sun

- The panel recognized the hemispheres had to be considered separately
 - Very little data to go on
- Northern hemisphere peak
 9/2011 (SSN=41.2)
- Southern hemisphere peak
 4/2014 (SSN=56.5)

You have to consider the hemispheres

 Apparently the hemispheres can be out of phase rather often.

Zolotova et al. 2010

When will the South shift back?

 Plotting difference between maxima of North and South since Cycle 18 shows a relatively constant shift

- In Cycle 18, South peaked 2 years prior to North
- In Cycle 24, North peaked 2.5 years prior to South

What Couples the Hemispheres?

- See nice summary in Norton,
 Charbonneau and Passos (2014)
- Lots of possible mechanisms
 - Magnetic diffusivity
 - Meridional diffusion
 - Transequatorial convective flows
 - Transequatorial meridional flow
 - Toroidal flux cancellation in the interior across the equator

The zonally-averaged latitudinal component of the Poynting flux in the equatorial plane.

Values (in *red-yellow*) indicates a flux of energy from the southern into the northern hemisphere.

And conversely for negative (in *blue-green*).

What does the future hold?

- Assuming cycle 24 will last 11 years
 - Minimum in Dec 2019
 - we only get down to SSN=8
 - The historical average for sunspot number minimum is 6
- McIntosh and Leamon 2014
 - Migrating activity bands for Cycle 24 hint at ~2019 for end of cycle

At least 4.5 more years to Cycle 24?

A Quick Recap

- The solar cycle prediction was pretty good...within error...for peak amplitude.
- Cycle 24 has quite a few years to run
- Predictions of Cycle 25 have to consider it to be a Sun of two halves
 - Can the phase shift be predicted?