Potential Space Weather Applications of the Coupled Magnetosphere-Ionosphere-Thermosphere Model

M. Wiltberger On behalf of the CMIT Development Team

Outline

- CMIT Model Overview
 - LFM, MIX, and TIEGCM Components
 - Inputs/Outputs
 - Resolution and Performance
- Space Weather Applications
 - Long Duration Runs WHI
 - Geosynchronous Magnetopause Crossing
 - Geosynchronous Magnetic Field Variations
 - Total Electron Content
 - Regional dB/dt

CMIT Model

LFM Magnetospheric Model

- Uses the ideal MHD equations to model the interaction between the solar wind, magnetosphere, and ionosphere
 - Computational domain
 - $30 R_{E} < X < -300 R_{E} \& \pm 100 R_{E}$ for YZ
 - Inner radius at 2 R_E
 - Calculates

- Requires
 - Solar wind MHD state vector along outer boundary
 - Empirical model for determining energy flux of precipitating electrons
 - Cross polar cap potential pattern in high latitude region which is used to determine boundary condition on flow

TIEGCM

- Uses coupled set of conservation and chemistry equations to study mesoscale process in the thermosphere-ionosphere
 - Computational domain
 - Entire globe from approximately 97km to 500km in altitude

Calculates

- Solves coupled equations of momentum, energy, and mass continuity for the neutrals and O⁺
- Uses chemical equilibrium to determine densities, temperatures other electrons and other ions (NO⁺, O_2^+, N_2^+, N^+)

Requires

- Solar radiation flux as parameterized by F10.7
- Auroral particle energy flux
- High latitude ion drifts
- Tidal forcing at lower boundary

MIX - Electrodynamic Coupler

- Uses the conservation of current to determine the cross polar cap potential
 - Computational domain
 - 2D slab of ionosphere, usually at 120 km altitude and from pole to 45 magnetic latitude
 - Calculates
 - $\nabla \cdot (\Sigma_P + \Sigma_H) \nabla \Phi = J_{\Box} \sin(\eta)$
 - Requires
 - FAC distribution
 - Plasma T and ρ to calculate energy flux of precipitating electrons
 - F107 or conductance

- CMIT Performance is a function of resolution in the magnetosphere ionosphere system
 - Low resolution
 - 53x24x32 cells in magnetosphere with variable resolution smallest cells ¹/₂ RE
 - 5° x 5° with 49 pressure levels in the ionospherethermosphere
 - On 8 processors of an IBM P6 it takes 20 minutes to simulate 1 hour
 - Modest resolution
 - 53x48x64 cells in the magnetosphere with variable resolution smallest cells ¹/₄ RE
 - 2.5° x 2.5° with 98 pressure levels in the ionospherethermosphere
 - On 24 processors of an IBM P6 it takes an hour to simulate an hour

Whole Heliosphere Interval

- As part of IHY the WHI was chosen as a follow on to the WSM
 - Internationally coordinated observing and modeling effort to characterize solarheliospheric-planetary system
 - Carrington Rotation 2068
 - March 20 April 16 2008
 - Includes two high speed streams which are part of a co-rotating interaction region

Different Stream Interactions

- Geospace response to each stream had different characteristics
 - Stream 1had prompt rise of Φ while stream 2 had delayed reaction
 - Stream 1 had higher Φ for longer than stream 2 even though Vx was lower
 - BZ plays an important role in determine geoeffectiveness of streams

Magnetopause Crossing Threat Scores

× ·		LFM	RS
	Α	0.95	0.93
	В	1.18	1.28
-1	POD	0.92	0.90
-2	FAR	0.22	0.30
	POFD	0.048	0.069
	TS	0.73	0.65
	TSS	0.87	0.83
	MTSS	0.73	0.64
LogN at XY Plane in SM Coordinates 2000 Apr 06 14:48:13UT	HSS	0.81	0.74

- Using GOES magnetic field data it is possible to detect when the magnetopause is pressed inside geosynchronous orbit during southward IMF
- This is a relatively rare event so TSS, MTSS and HSS are good choice
 - LFM performs better under these circumstances then empirical models

April 28, 2011

Space Weather Workshop

Storm-time Geosync Magnetic Field

- Geostationary fields are scientific metric, especially of interest during storms
- Results for 25 September 1998 Event
 - Data set GOES magnetic field (black)
 - Baseline Model is T03 Storm (red)
 - Test Model is LFM (green)
- Comparison shows that MHD model has much weaker ring current and tail current compared to Tsyganenko especially near midnight and at storm peak

The December 2006 "AGU Storm"

-10

-20

10

20

0

Field Alginged Current Structure

- Comparison of Iridium FAC observations with various resolutions of the LFM simulation results
 - Results show better agreement with boundaries at higher resolution, but with greater magnitude
 - Iridium R1 1.3MA
 - LFM Low 3 1.5MA
 - LFM Low 2 0.8MA
 - LFM High 2 2.5MA

Regional dB/dt tool

Conclusions

- CMIT has the capability to perform in faster than real time mode for long durations with minimal supervision
- Numerous parameters of interest can be derived from the basic physics parameters output by the model
- It is not perfect, still have areas of improvement
 - Essential to define the right metrics to assess the value using this model adds to forecasts

Backup Slides

Threat Scores

- Threat Score (Critical Success Index)
 - TS = CSI = hits/(hits+misses+false alarms)
 - Range 0 to 1 with 1 perfect and 0 no skill
 - How well did the forecast 'yes' events correspond to the observed 'yes' events?
 - Measures the fraction of observed and/or forecast events that were correctly predicted.
 - Can be thought of as accuracy when correct negatives are removed from consideration
- True Skill Statistic (Hanssen and Kuipers Discriminant)
 - TSS = (hits)/(hits+misses) (false alarms)/(false alarms+correct negs)
 - Range -1 to 1 with 1 perfect and 0 no skill
 - How well did the forecast separate the 'yes' events from the 'no' events?
 - Can be thought of as POD POFD
 - Uses all elements of the contingency table.
 - For rare events its unduly weighted toward the first term
- Modifed True Skill Statistic
 - TSS2 = (hits-misses)/(hits+misses) 2*(false alarms)/(correct negs)
 - Range -1 to 1 with 1 perfect and 0 no skill
 - First term is POD remapped to -1 to 1
 - Second term peanlizes a forecast for large area for rare event