First Results from the Colorado Student Space Weather Experiment (CSSWE): Energetic Particle Distribution in the Near Earth Environment

PI: Xinlin Li, Co-PIs: Scott Palo and Shri Kanekal

LASP Engineers: Rick Kohnert (chief technical mentor), Gail Tate (SW) + others

Student Team: involved over 65 graduate and undergraduate students

Lauren Blum (PM), David Gerhardt (SE), Quintin Schiller (CFO and Instrument)

Other current Ph.D. students: Sam Califf and Hong Zhao

Former Ph.D. students: Drew Turner and Weichao Tu

Funded: 1/1/10 Delivered: 1/9/12

Launched: 9/13/12, NRO (Atlas V) under NASA's ELaNa program

Orbit: ~480 km x 780 km, inclination 65°

(Spring of 2010)

(Fall of 2010)

(Spring of 2011)

(Spring of 2010)

Outer Radiation Belt Electrons Measured by SAMPEX (launched on 7/03/92: 550km × 675km, 82°, re-entered on 11/13/12)

Concurrent measurements with NASA/Van Allen Probes

(orbits: 605km x 30410km and 635km x 30540km, inclination: 100)

Passive Attitude Control: bar magnet & hysteresis rods

Solar cell mounting

System testing and debugging

REPTile assembly

Launched on 9/13/12, we received beacon packets during its first over pass

Commissioning phase completed on 10/04/12 and Particle detectors were turned on

The data are very clean, far exceeding expectation!

	Channel 1	Channel 2	Channel 3
Electrons	0.5-1.7 MeV	1.7-3.3 MeV	>3.3 MeV
Protons	9-18 MeV	18-30 MeV	30-40 MeV

Three-month science mission (<u>full success</u>) was completed on 1/05/13. We are now into the extended mission phase, focusing more on data analysis and modeling.

Concurrent measurements with NASA/Van Allen Probes

(orbits: 605km x 30410km and 635km x 30540km, inclination: 10°)

Comparison REPTile and MagEIS (~ 0.5 MeV):

- (1) ~ 0.5 MeV electrons go deep, pass slot region and merge with inner belt
- (2) Detailed structures: including so called "transient ring"

Comparison REPTile and REPT (>1.77 MeV):

- (1) Outer belt electrons dynamic with continuous PA scattering, but stayed at L≥3, and no "transit ring"
- (2) Inner belt electrons stable, confined to the equatorial region, only detectable by REPTile over SAA

Comparison between REPT and REPTile:

- (1) Very few energetic protons in the outer belt
- (2) Inner belt protons stable, confined to the equatorial region

A small SEP event was measured by REPTile and GOES –13

Measurements of electrons & protons from REPTile provide a clear picture of energetic particles (electrons and protons) in the near Earth environment (10/5-25/2012)

Measurements of electrons & protons from REPTile provide a clear picture of energetic particles (electrons and protons) in the near Earth environment (1/1-31/2013)

REPTile electron measurements since launch

Conclusions

Our tiny CubeSat has been operating over five months, providing <u>clean measurements</u> of energetic electrons and protons → a BIG success in education, engineering, and science! → A Proof!

Combined measurements with other missions such as NASA/Van Allen and THEMIS Probes provide a better characterization of the inner and outer belts (for both e⁻ and p⁺):

- (1) penetration depth is energy dependent
- (2) energy spectrum is L dependent
- (3) inner belt is well confined to the equatorial region

data analysis and modeling continue -> in-depth science results

CubeSat Mission Website: http://lasp.colorado.edu/home/csswe/