GOES-R+ (R and S and T and U) Extreme Ultraviolet Sensor (EUVS)

Frank Eparvier
EXIS Lead Scientist
Frank.eparvier@lasp.colorado.edu
(303) 492-4546
GOES-R+ EXIS: All 4 Flight Models Built

- **FM1 (GOES R)**
 - At Šč I & T

- **FM2 (GOES S)**
 - In pre-delivery storage (Delivery Summer 2015)

- **FM3 (GOES T)**
 - In pre-delivery storage

- **FM4 (GOES U)**
 - Just finished pre-environmental SURF calibration
GOES-R+ EXIS (EUV and X-ray Irradiance Sensors)

- Formulation Phase: 2004-2006
- Implementation Phase Awarded: 2007
- Critical Design Review: 2009
- FM-1 (GOES-R) Delivered 2013

EXIS = EUV and X-ray Irradiance Sensors

The Key Components of EXIS:
- EUVS = Extreme Ultraviolet Sensor
- XRS = X-Ray Sensor
- EXEB = EUVS/XRS Electrical Box
EUVS Overview

- **EUVS Purpose:** Monitor solar variations that directly affect satellite drag / tracking and ionospheric changes, which impact communication and navigation operations

- Requirement: make measurements to produce a spectral irradiance product in the 5-125 nm range at \(\leq 30 \)-second cadence

- **Pre-GOES-R EUVS:** Transmission grating spectrographs covering five broad bandpasses (first included on GOES-13)

- **EUVS for GOES-R+:** Three reflection grating spectrographs measuring specific solar emission lines from which full spectrum is reconstructed with a model
EUVS Measurement Concept for GOES-R+

- Measure proxies that are used to model the full EUV range (5-115 nm in 5-nm and 121.6 nm)
- Three EUVS channels that provide accurate proxies for the emissions from the chromosphere, transition region, and corona
- XRS provides fourth proxy for hot coronal continuum emissions during flares

EUVS Measurements:

- **Chromosphere:** MgII C/W (EUVS-C), CIII 117.5 nm and CII 133.5 nm (EUVS-B)
- **Transition Region:** Ly-alpha 121.6 nm and SiIV/OIV 140.5 nm (EUVS-B), HeII 30.4 nm and HeII 25.6 nm (EUVS-A)
- **Corona:** FeXV 28.4 nm (EUVS-A)
- **Hot Corona:** 0.1-0.8 nm and 0.05-0.4 nm (XRS)
GOES-R+ EUVS Summary

- New design concept measuring lines and MgII C/W rather than broad bands.
- Measurement cadence of 1-sec for EUVS-A and B and ~3-sec for EUVS-C (though L1b data product is 30-sec).
- End of Mission Accuracy of L1b product <20%.
- Initial EUVS L1b product will be lines and MgII C/W plus model in 5-nm bands from 5-115 nm plus 121.6 nm. Ground Processing Algorithm allows for updates to model.