Electric and Velocity Field
Determination in the Solar
Atmosphere



Electric fields on the solar surface determine the flux of magnetic
energy and relative magnetic helicity into flare and CME-producing
parts of the solar atmosphere:
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Here,dE,,/0t is the change in magnetic energy in the solar atmosphere, dE./dt is
the difference between the rate of change of total magnetic energy and the
potential-field magnetic energy, given a surface distribution of U, (Welsch 2006,

AplJ 638, 1101), and dH/dt is the change of magnetic helicity of the solar
atmosphere.

The flow field v is important because to a good approximation,

E =-v/c x B in the layers where the magnetic field is measured. Here E is the
electric field, B is the magnetic field, and A, is the vector potential of the potential
magnetic field that matches its measured normal component.



Approaches to Computing Electric Fields
from Magnetograms:

e Assume E=-v/cxB and find v from local correlation
tracking techniques applied to changes in line-of-
sight magnetograms (e.g. FLCT method of Fisher &
Welsch) (approach used in 15t part of this talk)

e Use vector magnetograms and normal component of
induction equation to determine 3 components of v
(e.g. ILCT method of Welsch et al (2004), MEF
method of Longcope (2004), and DAVE4VM (Schuck
2008)

 Use vector magnetograms to solve all 3 components
of the induction equation (2" part of this talk)



What can we do with time-sequences of line-of-
sight magnetograms? (there are currently many
more of these than vector magnetograms)

e Compute flow velocity estimates for a moderate sample of
active regions as they rotate across the solar disk, using FLCT!
(Fisher & Welsch 2008), and DAVE? (Schuck 2006)

e Compare magnetic field and flow velocity diagnostics with
solar flare energy output

* Try to quantify and understand the empirical relationships
between flow properties and flare energy output.

LFLCT code link: http://solarmuri.ssl.berkeley.edu/~fisher/public/software/FLCT/C_VERSIONS/

2 DAVE code link: http://wwwppd.nrl.navy.mil/whatsnew/dave/index.html



Fourier local correlation tracking (FLCT) finds v( x, y)
by correlating subregions, to find local shifts.
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Example of usage of FLCT




Magnetogram Data Handling

Pixels > 45° from disk center were not tracked.

To estimate the radial field, cosine corrections
were used, B, = B, ,./cos(O)

Mercator projections were used to conformally
map the irregularly gridded B,(3J, @) to a regularly
gridded Bg(x,y).

Corrections for scale distortion were applied.



FLCT and DAVE flow estimates were correlated, but
differed substantially.




FLCT and DAVE flow estimates were correlated, but
differed substantially.
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For some ARs in our sample, we auto-correlated u,, u

and By, for both FLCT and DAVE flows.
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BLACK shows autocorrelation for B; thick is current-to-previous, thin is current-to-initial.

BLUE shows autocorrelation for u,; thick is current-to-previous, thin is current-to-initial.

RED shows autocorrelation for u, thick is current-to-previous, thin is current-to-initial.



Parametrization of Flare Productivity

We binned flares in five time intervals, t:
— time to cross the region within 45° of disk center;
— 6C/24C: the 6 & 24 hr windows centered each flow estimate;
— 6N/24N: the “next” 6 & 24 hr windows after 6C/24C

Following Abramenko (2005), we computed an average
GOES flare flux [uW/m?/day] for each window:

F=(100S®+10SM+1.05©))/t;
exponents are summed in-class GOES significands

Our sample: 154 C-flares, 15 M-flares, and 2 X-flares



Correlation analysis showed several variables associated with
flare flux F. This plot is for disk-passage averaged properties.
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FLCT R.O. Corr. Coeffs

Field and flow properties are
ranked by distance from
(0,0), complete lack of
correlation.

Only the highest-ranked
properties tested are shown.

The more FLCT and DAVE
correlations agree, the closer
they lie to the diagonal line
(not a fit).

No purely intensive
guantities appear --- all
contain extensive properties.



With 2-variable discriminant analysis (DA), we paired X u B?
“head to head” with each other field/ flow property.

Wind. Variable(s) Considered® [Disc. Coeff] PF/F® PNF¢/F PF/NF¢ PNF/NF SS
6C Y u|Bg|? 115 201 96 2206 0.16
6C Y u|Bg|® [1.25], R [1.12] 107 200 64 2328 0.20
6C 3 u|Bg|? [0.95], R [1.11], {|Bg|) [0.39] 108 208 66 2326 0.21
6N R 39 80 62 2527  -0.08
6N R [1.96], 3 u|Bg|? [0.78] 11 78 65 2524  -0.08
6N R [1.89], 3" u|Bg|? [0.76], R [0.53] 10 79 63 2526  -0.04

24C Y u|Bg|? 302 371 74 1961 0.33
24C Y u|Bg|? [1.28], (| Br|) [0.96] 336 337 7 1965 0.37
24C Y u|Bg|? [1.53], (|Bgl) [0.88], (Bg) [0.48] 354 319 81 1954 0.39
24N S u|Bg|? 118 210 98 2282 0.16
24N Y u|Bg|? [1.43], R [0.67] 115 213 82 2208 0.18
24N Y u|Bg|? [1.45], R [0.40], Foscurrent [0.46] 121 207 72 2308 0.20

For all time windows, regardless of whether FLCT or DAVE
flows were used, DA consistently ranked X u B2 among the
two most powerful discriminators.



Summary of Flows/Flares Study

We found X u Bz? and R to be strongly associated with avg. flare flux and
flare occurrence.

> u B,?> seems to be a robust predictor:

- speed u was only weakly correlated with By;

- 2 Bp? was also tested;

- using u from either DAVE or FLCT gave the same result.

This study suffers from low statistics, so further study with larger
datasets is needed. (A proposal to extend this work is being written)

This work has been submitted (Welsch, Li, Schuck & Fisher 2009, ApJ).
A copy of the manuscript can be downloaded here:

http://solarmuri.ssl.berkeley.edu/~welsch/public/manuscripts/
ms_20090427.pdf



Can we determine the 3D electric field from
vector magnetograms?

)

Kusano et al. (2002, ApJ 577, 501) stated that only the equation for the
normal component of B (B,) can be constrained by sequences of vector
magnetograms, because measurements in a single layer contain no
information about vertical derivatives. Nearly all current work on deriving
flow fields or electric fields make this same assumption. But is this

statement true?



The magnetic induction equation

Use the poloidal-toroidal decomposition of the magnetic field and its partial
time derivative:

B=VxVxpz+VxJz (1)
B=VxVxBz+VxJz (2)
One can then derive these Poisson equations relating the time

derivative of the observed magnetic field B to corresponding time
derivatives of the potential functions:

ViB=-B, (3);
V2J=—4”JZ =-2-(V, xB,) (4);
C
(a/s) V,-B, (5
0z

Since the time derivative of the magnetic field is equal to -cVXE, we can
immediately relate the curl of E and E itself to the potential functions
determined from the 3 Poisson equations:



Relating VXE and E to the 3 potential functions:

VxE="ly (a/s) lV x )7+~ Vﬁz (6)
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The expression for E in equation (7) is obtained simply by uncurling

equation (6). Note the appearance of the 3-d gradient of an unspecified
scalar potential .

The induction equation can be written in component form to illustrate
precisely where the depth derivative terms aEy/az and dE,/dz occur:




Does it work?

First test: From 9B, /0t, aBy/at,aBz/c')t computed from Bill’'s RADMHD simulation of
the Quiet Sun, solve the 3 Poisson equations with boundary conditions as
described, and then go back and calculate dB/dt from equation (12) and see how

well they agree. Solution uses Newton-Krylov technique:

dB,/0t RADMHD E)By/at RADMHD dB,/0t RADMHD dB,/ot vs dB,/dt

dB,/dt derived 9B, /ot vs 9B, /ot




Comparison to velocity shootout case:

OBX/Gt ANMHD E)By/at ANMHD E)Bz/at ANMHD

dB, /ot derived




Velocity shoot out case (cont’d)

E, derived




Summary: excellent recovery of VxE, only
approximate recovery of E.

Why is this? The problem is that E, in contrast to VXE, is mathematically under-
constrained. The gradient of the unknown scalar potential in equation (13) does
not contribute to VXE, but it does contribute to E.

In the two specific cases just shown, the actual electric field originates largely
from the ideal MHD electric field —v/c x B. In this case, E-B is zero, but the
recovered electric field contains significant components of E parallel to B. The
problem is that the physics necessary to uniquely derive the input electric field
is missing from the PTD formalism. To get a more accurate recovery of E, we
need some way to add some knowledge of additional physics into a specification
of V.

We will now show how simple physical considerations can be used to derive
constraint equations for .



One Approach to finding y: A Variational Technique

The electric field, or the velocity field, is strongly affected by forces acting on the
solar atmosphere, as well as by the strong sources and sinks of energy near the
photosphere. Here, with only vector magnetograms, we have none of this
detailed information available to help us resolve the degeneracy in E from V.

One possible approach is to vary g such that an approximate Lagrangian for the
solar plasma is minimized. The Lagrangian for the electromagnetic field itself is
E2-B?, for example. The contribution of the kinetic energy to the Lagrangian is %4
pv2, which under the assumption that E = -v/c x B, means minimizing E?/B2. Since
B is already determined from the data, minimizing the Lagrangian essentially
means varying { such that E? or E2/B? is minimized. Here, we will allow for a
more general case by minimizing W2E? integrated over the magnetogram, where
W? is an arbitrary weighting function.



A variational approach (cont’d)

. oY, 1 oY, 1 Y,
dxdyW | (E; =—=)"+(E, -—=)"+(E; -—
mmffxy (E. ax) +(E, ay) + (£, Py )
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Here the x,y,z components of E' are assumed to be taken from equation (7)
without the V{ contribution.

To determine dy/dz contribution to the Lagrangian functional, we can use the
relationship E-B=R-B where R is any non-ideal contribution to E. Performing the
Euler-Lagrange minimization of equation (8) results in this equation:

d OJL d OJdL
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=0 (9)



A variational approach (cont’d)

Evaluating the equation explicitly results in this elliptic 2" order differential
equation for :

2 I I 2
Vv, WE,-V,y)+B,B, E,-V,»)-R-B)/B)=0 (10)
We have been pursuing numerical solutions of this equation, along with the 3 Poisson
equations described earlier. Comparisons with the original ANMHD electric fields
have been poor thus far. This may be due to numerical problems associated with the

large dynamic range of the magnetic field-dependent coefficients in this equation.

A more promising approach was recently suggested by Brian Welsch. Writing E, = E, -
V¥, and noting that E,B,=R-B-B, -E,, equation (10) can be re-written and simplified as

V. (W?/B)ExB)x2)=0 (11)
or

7 (vh x (W?/B.)E x B)) -0. (12)



A variational approach (cont’d)

Equation (12) implies that we can write

(W?/B_)(cExB), =(W?/B)(E, xBz+cEzxB,)=-V,x (13)

Dividing by W? and then taking the divergence of this equation, we derive an elliptic
equation for x that involves the magnetic field or its time derivatives:

JB R B.
Z+Vh-(c : szh)+
ot B

B, V,X) BV, x
Vh'( weg o)=Yy | 09




A variational approach (cont’d)

If the non-ideal part of the electric field R is known or if one desires to specify how
it varies over the magnetogram field of view, equation (14) can incorporate non-
ideal terms in its solution. However, we anticipate that most of the time, the non-

ideal term will be much smaller than ideal contributions, and can be set to O.

Once x has been determined, it is straightforward to derive the electric field and
the Poynting flux S=(c/4m)ExB:

ck, cR-B V,x-zxB,

B B’ W*B? 15)
cR-B B} . B, V.X A
CEh=7Bh_W2B2ZXVhX_ ‘l%/zBl; ZXBh (16)
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A variational approach (cont’d)

Finally, if one can ignore the non-ideal R*B term in equation (14), then the two
special cases of W2B2=1(minimized kinetic energy) and W?=1 (minimized electric
field energy) result in these simplified versions of equation (14) for x:

(W?B* =1:) vh-(ijhx)wh-((Bh-th)Bh)=agz (19)

W?=1:) Vh-(bthx)+Vh-((bh'VhX)bh)=agz (20)

Boundary conditions for x are not clear, but if the outer boundary of the
magnetogram has small or zero magnetic field values, it is likely that the
horizontal Poynting flux, and hence V x, has a small flux normal to the
magnetogram boundary. Therefore we anticipate that Neumann boundary
conditions are the most appropriate for applying to x if the boundaries are in low

field-strength regions.

Note that once x has been solved for, the potential field contribution can be
found by subtracting the PTD solutions for E' from the electric field from
equations (15-16).



A Variational Approach (cont’d)

S S

X y z




Summary of 3D electric field
Inversion

* It is possible to derive a 3D electric field from a time sequence of vector
magnetograms which obeys all components of the Maxwell Faraday
equation. This formalism uses the Poloidal-Toroidal Decomposition (PTD)
formalism.

*The PTD solution for the electric field is not unique, and can differ from the
true solution by the gradient of a potential function. The contribution from
the potential function can be quite important.

*An equation for a potential function, or for a combination of the PTD
electric field and a potential function, can be derived from variational
principles and from iterative techniques.

*The development and testing of numerical techniques are currently
underway.



