Headquarters U.S. Air Force

$$Fly - Fight - Win$$

Space Weather Workshop 2009

AF/A3O-W

Overview

- Bottom Line Up Front
- Space Situational Awareness
- Space Weather Impacts
- Space Weather Roadmap / Initiatives
- Way Ahead

National Partners working to provide timely & actionable space weather support for the warfighters and the Nation

Bottom Line Up Front

- Space environment mission improvements to support SSA
 - AFSPC and AF/A3O-S/W working in partnership to address needs across AFSPC SSA and AF Wx Weapon System (AFWWS)
 - AFSPC SSA: Space based sensors & Data exploitation (ISSA)
 - AFWWS: Ground-based sensors, models, net-centric database
 - Exploit data from existing infrastructure & national/international partners
 - Formalize space weather training and professional development
- A3O-W published Space Wx Implementation Plan in Mar 08
- AFSPC, A3O-W, A3O-S, 14AF, AFWA, and National Partners concluded ICT to develop end-to-end implementation plan for way ahead ... Plan documented in SSA Interim Architecture
- OFCM leading interagency CSESMO (Committee for Space Environment Sensor Mitigation Options) effort for OSTP ... developing options for DMSP and ACE space sensors plus analysis/forecast model software

Space Weather Operations

2 WS/WXZ Space Wx Product

Halloween storms 2003

Solar Cycle 24

Space Weather Information Flow

U.S. AIR FORCE

Observations Requirements

AFWA – weather data ingest/analysis/prediction and product flow to the warfighter!

Space / Space Wx Operators

Data Received

AFWA: Space Wx support provider

2 WS Space Weather Flight

Space Weather Warfighter Impacts

X-Rays, EUV, Radio Bursts

- SATCOM Interference
- Radar Interference
- HF Radio Blackout
- Geolocation Errors
- Satellite Orbit Decay

Scintillation

- Degraded SATCOM
- Dual Frequency GPS Error
 - Positioning
 - Navigation
 - Timing

Proton Events

- High Altitude Radiation Hazards
- Spacecraft Damage
- Satellite Disorientation
- Launch Payload Failure
- False Sensor Readings
- Degraded HF Comm (high latitudes)

Geomagnetic Storms

- Spacecraft Charging and Drag
- Geolocation Errors
- Space Track Errors
- Launch Trajectory Errors
- Radar Interference
- Radio Propagation Anomalies
- Power Grid Failures

Current Status

Space-Based Space Wx Sensors

- DMSP sunset program, NPOESS Nunn-McCurdy restructure de-manifested space environment sensors follow on capability being worked by AFSPC to avoid gap in ~2016
- ACE (Advanced Composition Explorer) replacement planning being worked as part of CSESMO for ~ 2016-2018
- Ground-Based Space Wx Sensors ... Current sensors need replacement
 - AFWA & SMC working RSTN SLEP (System Lifecycle Extension Program) and SOON modernization
 - Using some R&D sensors (SCINDA & TEC) for ops will continue to support
- **Space Environment Models**
 - AFWA w/ National Partners making progress ... increased \$s in FY08-15
 - AFRL, NRL, NASA, NSF, and others R&D progressing, working funding for transition programs
- System Effects Products
 - AFSPC funding ops software capability; Additional R&D funding needed

Space Wx Capability for SSA

Today & Circa 2017

Today's Space-Based and Ground-Based Measurement & Modeling Capabilities

1 DMSP
2 ACE/SOHO
3 GOES
4 GPS
5 DSP
6 NPOESS
7 C/NOFS
8 SOON
9. RSTN
10 DISS
11TEC
12 SCINDA
13 Geomag

	Example Mission	Observing	Forecasting
Space Weather Parameter	Supported	Capability	Capability
(% Space-based / Ground-based contribution)		(Threshold SSA)	(Objective SSA)
Ionospheric Electrons (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Geolocation		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Communications		
Energetic Particles (80%/20%) 1, 2, 3, 4, 5, 6, 7, 13	Satellite Ops		
Radiation & Disturbances (70%/30%) 1, 2, 3, 4, 5, 6, 7, 10, 11, 12 ,13	Space Track		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Navigation		

Good (>75%)

Moderate (50-75%)

Marginal (25-50%)

L

Little or None (0-25%)

Fund both Space-Based and Ground-Based Measurement & Modeling Capabilities

2 ACE/SOHO FO 3 GOES 4 GPS 5 DSP 6 NPOESS 7 C/NOFS 8 ISOON/GONG 9 RSTN II 10 NEXION 11TEC 12 SCINDA

13 Geomag

	Example Mission	Observing	Forecasting
Space Weather Parameter	Supported	Capability	Capability
(% Space-based / Ground-based contribution)		(Threshold SSA)	(Objective SSA)
Ionospheric Electrons (50%/50%) 1, 2, 7, 8, 9, 10, 11, 12, 13	Geolocation		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 8, 9, 10, 11, 12, 13	Communications		
Energetic Particles (80%/20%) 1, 2, 3, 4, 5, 6, 7, 8, 9, 13	Satellite Ops		
Radiation & Disturbances (70%/30%) 1 - 13	Space Track		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 8, 9, 10, 11, 12, 13	Navigation		

^{*}SES- SSA Environment Sensing ... DMSP Space Wx Sensor Follow-on

SSA: Space Weather Roadmap

U.S. AIR FORCE

- Improve analysis, forecasting, & effects capabilities ... FY08-17+
- Collaborate with U.S. & Allied government/civilian agencies to increase sensing capability & reduce costs ... NASA, NOAA, NSF, USGS, LANL, and others
- Modernize ground-based sensing capabilities ... FY08-17+
- Follow-on to DMSP space weather sensing capabilities ... FY12-17

Space Weather Space-Based Sensing

Defense Meteorological Satellite Program (DMSP) – particles/fields

Polar-Orbiting Environmental

Defense Support Program (DSP) - particles

Advanced Composition Explorer (ACE) – solar wind

Geostationary Operational Environment Satellite (GOES) – X-ray, particles and fields

Solar Heliospheric Observatory (SOHO) - solar wind/radiation

Space-Based Sensor Options

NPOESS Mitigation

- SSA Environmental Monitoring (SSAEM) proposed by AFSPC
 - Looking to buy sensors for rides-of-opportunity
 - DoD identifying funding ... AFSPC leading requirements/concept development
- Currently enhancing NPOESS space environment monitor (SEM-N)...
 METOP component of NPOESS may not fly SEM

Exploit current satellite systems space wx observing capabilities

- GOES, GPS, and other satellites
- C/NOFS and COSMIC follow-on operations

Advocacy to NOAA, NASA, etc.

- Need partnerships to collect from the rest of the space domain
- Need ACE replacement ... OFCM/NOAA/NASA/DoD considering options for OSTP ... CSESMO

Space Weather Ground-Based Sensing Examples

AF and other agencies collect space weather data from groundbased sensors

- Sensors include SOON, RSTN, DISS, NEXION, USGS Magnetometer, SCINDA, TEC, and others
- Data from many government & non-government sources ... Data partnerships are crucial

Ground Sensor Upgrades

Ground Based Space Wx Sensors (Ionosphere)

- Upgrading aging sensor hardware to meet requirements
 - Ionosphere sensor improvements (NEXION replaces DISS)
 - Leverage additional ionosondes fielded by NSF, NOAA, and international partners
- Continue to use NASA JPL Total Electron Content (TEC) data

Ground Based Space Wx Sensors (Solar Observing)

- Optical solar sensor upgrade (ISOON replaces SOON)
- Maintain radio solar sensors for solar max
 - Begin radio solar sensor R&D in FY09 (RSTN replacement)
- Collocate and automate solar observing sites
- Leverage NSF GONG to improve capabilities and reduce costs

Improving Ground-based Obs Before Solar Max

ISOON SOON

Note: Not the same date and time

Ground-Based Space Wx Sensor Opportunities NSF

U.S. AIR FORCE

GONG

Upgrade to provide H-alpha capability ... data products every minute

Modeling and Exploitation S/W Upgrades

Modeling/Exploitation

- Additional investments accelerate space wx analysis, forecast & exploitation capabilities ... Directly enhances SSA for warfighters
 - Substantially increased investment in Space Weather Analysis and Forecast System (SWAFS)
 - AFSPC funding SSA Environmental Effects Fusion System (SEEFS) to provide JSpOC tool set to support ops assessments
- Investments provide Models, Apps, Graphics, Data Fusion,
 & Decision Aids to improve operational space weather support

GAIM Plan & Deliverables

U.S. AIR FORCE

Bottom Line

- Accelerating actions to prepare for solar max ... and beyond
- OFCM, NOAA, NASA, DoD, and other National Partners working to determine way forward to support national space wx needs and SSA ... CSESMO and other efforts
- Increased investment in ground-based sensor, modeling and exploitation capabilities
- Must ensure AF space wx expertise available in future

Headquarters U.S. Air Force

Integrity - Service - Excellence

Questions?

U.S. AIR FORCE

Space Wx Training & Personnel Initiatives

Space Weather Training

- Formalize internal AFWA space weather training course already available to outside agencies
- Continue to provide space weather overview during Weather initial skills training

Personnel

- Revitalizing Advance Academic Degree program for space weather modeling and exploitation
- Space weather officers/enlisted will now participate in AFSPC Space Professional Development

Space Situational Awareness Operational View

Mitigation of Impacts

Warnings

- Geomagnetic Activity
- Solar Event, Flare, Radio Burst
- Energetic Particle/Charging
- Short Wave Fade

Specification & Forecast

- Ionosphere
- Magnetosphere
- Solar Wind

Products

- Radar Auroral Clutter
- HF Illumination
- GPS Error
- HF/UHF Point-to-Point
- Ap/F10 Forecast
- Anomaly Assessments
- UHF SATCOM Scintillation

1 DMSP
2 ACE/SOHO
3 GOES
4 GPS
5 DSP
6 NPOESS
7 C/NOFS
8 SOON
9. RSTN
10 DISS
11TEC
12 SCINDA
13 Geomag

Space Wx Capability for SSA

Today

Today's Space-Based and Ground-Based Measurement & Modeling Capabilities

	Example Mission	Observing	Forecasting
Space Weather Parameter	Supported	Capability	Capability
(% Space-based / Ground-based contribution)		(Threshold SSA)	(Objective SSA)
Ionospheric Electrons (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Geolocation		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 10, 11, 12,13	Communications		
Energetic Particles (80%/20%) 1, 2, 3, 4, 5, 6, 7, 13	Satellite Ops		
Radiation & Disturbances (70%/30%) 1, 2, 3, 4, 5, 6, 7, 10, 11, 12,13	Space Track		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Navigation		

Good (>75%)	Moderate (50-75%)	Marginal (25-50%)	Little or None (0-25%)
300a (>1070)	Moderate (00 1070)	 marginar (20 00 /0)		0 20/0/

Space Wx Capability for SSA

Circa 2017

Do not fund Ground-Based or Space-Based Measurement & Modeling Capabilities

D
1 DMSP
2 ACE/SOHO
3 GOES
4 GPS
5 DSP
6 NPOESS
7 C/NOFS
8 SOON/GONG
9 RSTN
10 NEXION
11TEC
12 SCINDA
13 Geomag

	Example Mission	Observing	Forecasting	
Space Weather Parameter	Supported	Capability	Capability	
(% Space-based / Ground-based contribution)		(Threshold SSA)	(Objective SSA)	
lonospheric Electrons (50%/50%) 10, 11, 12 ,13	Geolocation			
Ionospheric Disturbances (50%/50%) 10, 11, 12 ,13	Communications			
Energetic Particles (80%/20%) 3, 4, 5, 6, 13	Satellite Ops			
Radiation & Disturbances (70%/30%) 3, 4, 5, 6. 10, 11, 12 ,13	Space Track			
Ionospheric Disturbances (50%/50%) 10, 11, 12 ,13	Navigation			

	Good (>75%)		Moderate (50-75%)		Marginal (25-50%)		Little or None (0-25%)
--	--------------	--	-------------------	--	-------------------	--	------------------------

Fund Ground-Based and not Space-Based Measurement & Modeling Capabilities

FL
1 DMSP
2 ACE/SOHO
3 GOES
4 GPS
5 DSP
6 NPOESS
7 C/NOFS
8 ISOON/GONG
9 RSTN II
10 NEXION
11TEC
12 SCINDA
13 Geomag

	Example Mission	Observing	Forecasting
Space Weather Parameter	Supported	Capability	Capability
(% Space-based / Ground-based contribution)		(Threshold SSA)	(Objective SSA)
Ionospheric Electrons (50%/50%) 8, 9, 10, 11, 12, 13	Geolocation		
Ionospheric Disturbances (50%/50%) 8, 9, 10, 11, 12, 13	Communications		
Energetic Particles (80%/20%) 3, 4, 5, 6, 8, 9, 13	Satellite Ops		
Radiation & Disturbances (70%/30%) 3, 4, 5, 6, 8, 9, 10, 11, 12, 13	Space Track		
Ionospheric Disturbances (50%/50%) 8, 9, 10, 11, 12, 13	Navigation		

Space Wx Capability for SSA

Circa 2017

Fund Space-Based and not Ground-Based Measurement & Modeling Capabilities

1 DMSP/SES*
2 ACE/SOHO FO
3 GOES
4 GPS
5 DSP
6 NPOESS
7 C/NOFS
8 SOON/GONG
9 RSTN
10 NEXION
11TEC
12 SCINDA

13 Geomag

	Example Mission	Observing	Forecasting
Space Weather Parameter	Supported	Capability	Capability
(% Space-based / Ground-based contribution)		(Threshold SSA)	(Objective SSA)
Ionospheric Electrons (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Geolocation		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Communications		
Energetic Particles (80%/20%) 1, 2, 3, 4, 5, 6, 7, 13	Satellite Ops		
Radiation & Disturbances (70%/30%) 1, 2, 3, 4, 5, 6, 7, 10, 11, 12 ,13	Space Track		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 10, 11, 12 ,13	Navigation		

Good (>75%) Moderate (50-75%) Marginal (25-50%) Little or None (0-25%)

Fund both Space-Based and Ground-Based Measurement & Modeling Capabilities

ı u
1 DMSP/SES*
2 ACE/SOHO FO
3 GOES
4 GPS
5 DSP
6 NPOESS
7 C/NOFS
8 ISOON/GONG
9 RSTN II
10 NEXION
11TEC
12 SCINDA

13 Geomag

	Example Mission	Observing	Forecasting
Space Weather Parameter	Supported	Capability	Capability
(% Space-based / Ground-based contribution)		(Threshold SSA)	(Objective SSA)
Ionospheric Electrons (50%/50%) 1, 2, 7, 8, 9, 10, 11, 12, 13	Geolocation		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 8, 9, 10, 11, 12, 13	Communications		
Energetic Particles (80%/20%) 1, 2, 3, 4, 5, 6, 7, 8, 9, 13	Satellite Ops		
Radiation & Disturbances (70%/30%) 1 - 13	Space Track		
Ionospheric Disturbances (50%/50%) 1, 2, 7, 8, 9, 10, 11, 12, 13	Navigation		

^{*}SES- SSA Environment Sensing ... DMSP Space Wx Sensor Follow-on