Space Radiation Analysis Group
Operational Tools

19 April 2013

1Kerry Lee

1A. Bahadori, 2J. Barzilla, 2T. Bevill, 1D. Fry, 2R. Gaza, 2A.S. Johnson, 2J. Keller, 2M. Langford, 1E. Semones, 2N. Stoffle, and 2A. Welton

1NASA Johnson Space Center, SD2, Houston, TX 77058 U.S.A.
2Lockheed-Martin Space Operations, Houston, TX 77258 U.S.A.
OVERVIEW

- SRAG Operations
- Data and Measurements
- Technology Development
- SRAG Future
SRAG Operations
SRAG, est. 1962
- Real-time console operations
- Crew, ambient monitoring
- Pre-flight planning
- Design evaluations

Radiation Health Office
- Interpretation
- Record Keeping
- Risk Estimation
- Crew Selection

NASA Space Life Sciences (SLS) Reorganization combined SRAG and RHO. SLS changed names to Human Health and Performance (HH&P).
Radiation Monitoring for Crew and Space Vehicle

- **Console Operations Support**
 - 24 hours Contingency Support
 - 4 hour/day Nominal Support

- **Active Radiation Detectors**
 - Tissue Equivalent Proportional Counter (TEPC)
 - Charge Particle Directional Spectrometer (CPDS)
 - Intra-Vehicular TEPC (IV-TEPC)

- **Passive Radiation Detectors**
 - Crew Passive Dosimeter (CPD)
 - ISS Radiation Area Monitor (RAM)
Instrumentation

- **RAM** – Radiation Area Monitors
 - Passive dosimeters, 20+ locations on ISS

- **REM** – Radiation Environment Monitor
 - Active dosimeter with USB interface

- **TEPC** – Tissue Equivalent Proportional Counter
 - Located in ISS Service Module

- **IV-TEPC** – new TEPC detector
 - Moves about ISS every 4-6 weeks
Comparison to RAM Data
Comparison to RAM Data
A/L1-AD3
REM is based on a 256 x 256 pixel grid detector with total area of 2 cm². Low mass and power.
REM Instrument LET Measurements

LET Distribution

Number of Particles

Linear Energy Transfer [keV/μm]
Technology Development
Update to Advanced Radiation Protection Project

- MC-CAD: Radiation protection design through analysis of complex CAD geometries using Monte Carlo radiation transport codes.
- Both tasks are underway with expected operational products completed in Sept. 2014

- ARP was a casualty of sequestration on 3/1/2013
- Partial funding regained in April for ISEP to continue through September 2013
- MC-CAD remains unfunded by OCT
- ISEP will deliver models that need further verification and MC-CAD will deliver a prototype CAD-FLUKA interface
Technology Development

- **Active Shielding**
 - Research to determine if it is mass and/or power prohibitive
 - Technology development on system components that will improve shielding effectiveness and decrease mass and power needs

- **Measurements**
 - ISS Detailed Test Objective – REMs starting summer 2012
 - Actual: Launched in August began operations in October
 - Exploration Flight Test 1 (EFT-1) (RAMs and REMs) – 2014
 - Radiation Assessment Detector (RAD) with an added fast neutron detector channel – 2015
Collaboration with the University of Wisconsin has been established to make use of their existing DAG-MC (Direct Accelerated Geometry – Monte Carlo) tool as a universal geometry and navigation interface to radiation transport packages.

Teamed with FLUKA collaboration at CERN to make use of the FLUGG (FLUKA-GEANT4 interface) to link DAG-MC with FLUKA (FLU-DAG).
DAG-MC Overview

- Functioning version that currently works with MCNP. Used regularly for Fusion ITER project.
- CAD converted to MOAB (Mesh Oriented datABase)
- Fast binary search algorithms
- Material assignment, boundary conditions, source definition, tally/scoring
- Imprint and merge for touching surfaces (water tight)
- Navigation within CAD on complex geometry is only about 2.5 times slower than simplistic native quadric combinatorial geometry models
Space Weather Forecasting

- Historical database for identification of event trending/characteristics
- Probabilistic modeling for operational mission planning
- ISEP: integration of probabilistic spectral and SEP dose modeling
- Dose projection for in-event risk mitigation
- Forecasting of event onset and impact outside of low-earth orbit.

MAG4 Model

David Falconer University of Alabama

In Collaboration with CCMC and University of Alabama
Model Validation and Testing: All-Clear (Preliminary)

- Change in ‘All-Clear’ probability is sufficiently distinct for operational use.
- Thresholds for ‘go / no-go’ call will be user dependent and user-defined.
- Operational thresholds will be investigated in FY13.

A full assessment of forecast skill being performed by University of Alabama and JSC.
All-clear probability is cumulative over disk. However, time dependence of single-region growth correlates with region identified as producing flares and SEP.
SRAG Future
Future SRAG Instrumentation

- **ISS Radiation Assessment Detector**
 - Designed to measure neutrons and charged particles from protons through Iron
 - Will provide real-time data
 - Can be relocated within the habitable volume

- **MPCV Hybrid Electronic Radiation Assessor (HERA)**
 - Based on timepix technology and REM heritage
 - Will be integrated into MPCV
 - Will provide real-time data
Operational Toolset Next 5 Years

- SRAG expects to have the capability to do quick turnaround dose and risk assessments within complex vehicle geometry starting from CAD (months to week(s))

- SRAG expects to have forecasting models that give 24 hour all-clear probabilities for operating anywhere between the Earth and Mars

- SRAG expects to have models that predict overall radiation exposure early on during an SPE allowing go-no go decisions to be made

- SRAG expects to have instrumentation that continues to meet real-time data requirements that has reduced mass and power compared with today’s ops instruments