## Recent Updates and Results From the NAIRAS Aircraft Radiation Exposure Model

# Christopher J. Mertens NASA Langley Research Center Hampton, VA

Space Weather Workshop Boulder, Colorado April 16-19, 2013

### **NAIRAS** Model

- Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS):
  - Real-time physics-based, global model
  - Real-time inclusion of GCR and SEP radiation
  - Real-time solarmagnetospheric effects on radiation
  - Real-time meteorological data used



### **NAIRAS** Team

- Chris Mertens (PI), NASA Langley Research Center, Hampton, VA
  - Cosmic ray transport; integration of NAIRAS models and data; V&V
- Kent Tobiska, Space Environment Technologies, Inc, Pacific Palisades, CA
  - Distributed data nerve center and conduit for input data models output data
- Brian Kress, Dartmouth College, Hanover, NH
  - Real-time magnetospheric transport / geomagnetic shielding model
- Mike Wiltberger and Stan Solomon, NCAR/HAO, Boulder, CO
  - Benchmark MHD magnetospheric magnetic fields
- Joe Kunches, NOAA/Space Environment Center, Boulder, CO
  - Guidance on research-to-operations; interaction with commercial aviation industry
- Barbara Grajewski, CDC/NIOSH, Cincinnati, OH
  - Aircraft radiation measurement data for V&V; epidemiological studies
- Steve Blattnig, NASA Langley Research Center, Hampton, VA
  - Cosmic ray nuclear interactions; transport physics
- Xiaojing Xu, SSAI, Hampton, VA
  - Scientific programming and data visualization tools
- Ryan Norman (Post-Doc), NASA Langley Research Center, Hampton, VA
  - Cosmic ray nuclear interactions; transport physics

### **Outline**

- NAIRAS Products
- NAIRAS Status & Update
  - Model Updates
  - Comparison with Radiation Measurements
  - Climatology of Dosimetric Quantities
- Extreme Space Weather Event: 1859 Carrington Event
- Radiation Measurement Projects
  - Automated Radiation for Aviation Safety (ARMAS)
  - Radiation Dosimetry Experiment (RaD-X)

## NAIRAS Graphical Products March 2012 Solar Storm Event





Public Web site: <a href="http://sol.spacenvironment.net/">http://sol.spacenvironment.net/<a href="mairas/">nairas/</a> (or google NAIRAS)

## NAIRAS Graphical Products March 2012 Solar Storm Event





Public Web site: <a href="http://sol.spacenvironment.net/">http://sol.spacenvironment.net/<a href="mairas/">nairas/</a> (or google NAIRAS)

## NAIRAS Model Predictions During March 2012 Solar Storm Events





Public Web site: <a href="http://sol.spacenvironment.net/">http://sol.spacenvironment.net/"nairas/</a> (or google NAIRAS)

### **NAIRAS** Updates

- Research Model Updates
  - Update heliospheric GCR transport to Badhwar and O'Neill 2010 (BON10) model.
  - Calculate absorbed dose in silicon
  - Annual-average dosimetric quantities from 1960-2010
  - Microelectronic effects: SEU rate proxy: >10 MeV neutron flux
- Real-Time Version: Coming Soon
  - BON10 Model
- Real-Time Version: Near Future
  - Improved pion-electromagnetic ( $\pi$ /EM) cascade model
  - >10 MeV neutron flux

# NAIRAS/DLR-TEPC Comparisons High-Latitude Flight



TEPC data courtesy of Matthias Meier

#### **BON04 Model**



# NAIRAS/DLR-TEPC Comparisons High-Latitude Flight



#### **BON10 Model**



TEPC data courtesy of Matthias Meier (DLR)

# NAIRAS/DLR-TEPC Comparisons Low-Latitude Flight

### 

#### **BON10 Model**



TEPC data courtesy of Matthias Meier (DLR)

### NAIRAS/DLR-Liulin Comparisons Low-Latitude Flight

### 

#### **BON10 Model**



Liulin data courtesy of Matthias Meier (DLR)

# NAIRAS/DLR-Liulin Comparisons High-Latitude Flight



#### **BON10 Model**



Liulin data courtesy of Matthias Meier (DLR)

### **NAIRAS Climatology of Dose Rates**



- SEP Spectral Fluence
   [Smart et al., 2006;
   Townsend et al., 2006,
   2011]
  - Assume a spectral shape (see figure)
  - Normalize spectral shape to >30 MeV proton fluence determined by impulsive NOy deposition in polar ice cores [McCracken et al., 2001]







SEP Spectral Fluence Rate: Combine Smart et al. [2006] SEP proton intensity-time profile with Townsend et al. [2006, 2011] SEP fit parameters ( $\Phi_0/20$ )



Temerin and Li [2002] & Li et al.[2006]

Time (hour) Starts at UT 0:00 on Sept. 1, 1859

#### Effective Dose for 1859 Carrington Event Aug72\_WB, 20-90N







# Automated Radiation for Aviation Safety (ARMAS) Project

- Project led by Space Environment Technologies (Tobiska)
- Deploy and obtain real-time dosimeter data at commercial airline altitudes
- Ingest real-time dosimeter measurements into the NAIRAS model to improve accuracy of radiation dose predictions along flight track
- Distribute ingested/improved data to the web and to apps
- Improve aviation safety by laying ground work for automated, reliable predictions of the cosmic ray radiation environment at commercial airline altitudes

### **Vision and Progress**

 ARMAS will utilize airborne micro dosimeters, calibrated to TEPC, to make dose and dose rate measurements in real-time, transmit the data to the ground for data ingestion into NAIRAS, and then distribute the updated information via SpaceWx app





## Radiation Dosimetry Experiment RaD-X

#### Science Goal #1:

 Improve understanding of cosmic ray transport processes and atmospheric interactions

#### Science Objectives (SO):

- SO1: Dosimeter measurements at high altitude above Pfotzer maximum and compare to NAIRAS
- SO2: Characterize temporal variations in dosimetric quantities above Pfotzer max

#### Threshold Design:

Define: 4-hrs science data @ 20 km

Detectors: TEPC, TID

Accomplish: SO1

#### Baseline Design

Define: 24-hrs science data @ 36.5 km

Detectors: TEPC, TID, Liulin, RaySure

Accomplish SO2, SO1+





## Radiation Dosimetry Experiment RaD-X

#### Science Goal #2:

- Improve understanding of the relationship between silicon-based radiation measurements and radiobiological response
- Science Objectives (SO):
  - SO3: Characterize the extent to which silicon-based dosimeters can emulate radiobiological response
  - SO4: Develop an empirical relationship between microdosimeter measurements and absorbed dose in silicon
- Threshold Design:

Define: 4-hrs science data @ 20 km

Detectors: TEPC, TID

Accomplish: SO4

Baseline Design:

Define: 24-hrs science data @ 36.5 km

Detectors: TEPC, TID, Liulin, RaySure

Accomplish: SO3, SO4+

#### **TEPC**





### **Conclusions**

- Improved NAIRAS accuracy with BON10 heliospheric GCR transport model
- Expanded NAIRAS products
  - Absorbed dose in silicon
  - SEU proxy
- Promising measurement campaigns to support NAIRAS V&V and improve model reliability to advance aviation safety