

Geoff Reeves, Yue Chen, Vania Jordanova, Sorin Zaharia, Mike Henderson, and Dan Welling.

DREAM: The Dynamic Radiation Environment Assimilation Model

- Developed by LANL to quantify risks from natural and nuclear belts
- Uses Kalman Filter, satellite observations, and physics model
- Couples ring current, magnetic field, and radiation belt models
- Goals: Specification, Prediction, Understanding

Why Data Assimilation?

DREAM Computational Framework

Flux vs L*, Time (1 MeV)

Distribution at L*=6

Validation 2: Average Flux vs Altitude

Validation 3: Prediction Efficiency testing variation around the mean

• PE = 1 -
$$\frac{\Sigma \text{ (model - obsv)}^2}{\Sigma \text{ (obsv-)}^2}$$

Validation 4: Average absolute error DREAM gives ~10x improvement

Connecting DREAM to LEO (and LEO to DREAM)

Trapped Electron Observations

Precipitating Electron
Observations at LEO

- LEO observations are critical: auroral, MeV electrons, MeV ions and NPOES instruments (post Nunn-McCurdy) are deficient
- LEO informs not only the local space weather conditions but also global models of surface charging, internal charging, dose, etc
- Extrapolating trapped particle models to LEO is challenging

The Opportunities and Challenges of LEO

- LEO is heavily populated and an important region to predict
- LEO satellites provide global coverage at high cadence
- LEO measures ionospheric input
- But, only a small fraction of particles reach LEO
- Field asymmetries such as the SSA
- Time and activitydependent precipitation

POLAR and SAMPEX: 2 MeV electron flux

POLAR and **SAMPEX** on the same scale

The flux ratio varies from 0.1 to 10⁻⁵ with Time, L, Activity

POES: Ratio of precipitating/trapped flux can be better understood in physical context

The RAM-SCB provide further information on coupling of trapped fluxes to LEO & the ionosphere

Perpendicular Pressure

Azimuthal Current Density

RAM-SCB calculates EMIC & Whistler wave growth, amplitude, & wave-particle interactions

Precipitating 1 MeV electron and 100 keV ion fluxes as a function of L, LT, and time

RAM-SCB and the SW Modeling Framework

1-way coupling has been demonstrated 2-way is in development

Realistic calculation of ring current is the first step for calculation of Region 2 currents

- BATSRUS ~ zero Dst
- RAM-SCB stronger RC than SWMF (BATSRUS+RCM)
- Including O+ implies fewer ions and weaker Dst
- E-field very strong in recovery phase— will change with shielding
- Tail current (> 6.6 R_E) not included (~ 30% of Dst?)

RAM-SCB equatorial B field is much lower and has more structure than SWMF

SWMF

RAM-SCB

Artifacts at L<3.5 are due to imperfect model grid matching

Realistic calculation of ring current pressures and B produce very realistic R2 currents

- 3D equilibrium code calculates currents from pressure gradients and forcebalanced B-field
- much sharper resolution (field line inter-distance increases toward Earth)
- SWMF R-1 currents; very small R-2 currents no shielding
- RAM-SCB: R-2 currents at lower latitudes; some R-1 currents higher

DREAM at LEO: Conclusions

- Extrapolating global radiation belt models to LEO is complex
- Assimilating LEO fluxes into a global model could produce large (>10³) errors if not done properly
- "Properly" means considering dependence on energy, local time, geomagnetic activity, magnetospheric regions...
- Local pitch angle information hugely helps understand different behavior in trapped, bounce-loss, & drift-loss cones
- LEO measurements (if any) help more than just LEO satellites

