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The Deep Space Network and its Space Flight Operations Facility are
responsible for communications with spacecraft beyond Earth orbit. The
DSN communicates primarily at S-band and X-band and is beginning to
support higher frequency, Ka-Band:

Transmit: Receive:
S-Band 2110-2120 MHz 2290-2300 MHz
X-Band 7145-7190 MHz 8400-8450 MHz
Ka-Band 34200-34700 Mhz 31800-32300 MHz

The DSN is responsible for around the clock control and data receipt for
30 active missions:

CURRENT DSN OPERATIONAL SPACECRAFT

ACE Geotail NEXT (STARDUST)
Cassini Hayabusa (MUSC) ROSETTA

CHANDRA (XRO) INTEGRAL SOHO

Chandrayaan-1 Mars Express (MEX) Spitzer Space Telescope
CLUSTER Il (A) Mars Odyssey STEREO Ahead & Behind
CLUSTER 1l (B) MER 1 Venus Express (VEX)
CLUSTER Il (C) MER 2 Voyager 1 (VIM)
CLUSTER 1l (D) MESSENGER Voyager 2 (VIM)

DAWN MRO WIND

EPOXI (Deep Impact) New Horizon WMAP

MSL Juno Grall
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JPL Division 88 (Earth Science Missions) is responsible for the
following Earth missions and instruments:

Atmospheric Infrared Sounder (AIRS)

Advanced Spaceborne Thermal Emission and Reflection (ASTER)
Multi-Angle Imaging Spectroradiometer (MISR)

Microwave Limb Sounder (MLS)

Tropospheric Emission Spectrometer (TES)

Active Cavity Radiometer Irradiance Monitor (ACRIM) Satellite
Cloudsat

Gravity Recovery and Climate Experiment (GRACE) Satellite
Jason-1/2 Satellites

Quikscat
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Space Weather Effects on Communications

® JPL operates primarily at S-band and X-band and is beginning to support
higher frequency Ka-Band to avoid Earth weather and ionospheric scintillation.

® Solar wind density and planetary ionospheres affect signal propagation (the
effects are used to evaluate planetary ionospheres)

Space Weather Effects on Spacecraft Performance/Anomalous
Behavior

® Cumulative Radiation Effects (TID, DDD)

® SEE: Single Event Upsets, Latch-up, Single Event Transients, etc.

e Surface Charging/Wake Effects (Solar Wind, Aurora, Geosynchronous Orbit)
® [nternal Charging (Radiation Belts)

® Power Loss (Plasmas)

® VxB Electric Fields

® Surface Degradation/Erosion (Oxygen Erosion, lon Sputtering, Comet Dust)
® Space Debris/Micrometeroid Impacts (e.g., Meteor Streams, Dust Rings, etc.)

“Exotic Environments”: Glow, Lightning (Venus, Jupiter), lo Volcanoes Tita
Dust (Mars, Moon), etc. .
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Examples of Radiation
Effects on JPL Mission Ops
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Lessons Learned: Need SPE forecast to prepare for
operational impacts (e.g., loss of power and attitude control)
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Lessons Learned: Real Time SPE Observations can Predict
Effects on Ops (Cassini Solid State Recorder Upsets)
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Oct 23: Genesis at L1 entered safe mode. Normal operations resumed on
Nov. 3

Oct 24. Midori-2 Polar satellite failed (Spacecraft charging...)
Stardust comet mission went into safe mode; recovered.

Oct 28: ACE lost plasma observations.
Mars Odyssey entered Safe mode

Oct 29: During download Mars Odyssey had a memory error
MARIE instrument powered off (has NOT recovered)

Oct 30: Both MER entered “Sun Idle” mode due to excessive star tracker
events

Two UV experiments on GALEX had excess charge so high
voltages turned off.

Nov. 6 Mars Odyssey spacecraft commanded out of Safe mode;
operations nominal.
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Safe mode entry Oct. 28-29, 2003 (linear & log scales)
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Oct 28: Mars Odyssey entered Safe mode
Oct 29: During download Mars Odyssey had a memory error
MARIE instrument powered off (has NOT recovered)
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SEUs visible in MER
PanCams on Martian
surface

Lessons Learned: Multiple
models may be required to
forecast space weather

a) Mean b) Avg Max Daily Temp, 025 (std) ¢) Avg Daily Temp Range, 025 (std)

Pressure (mbar), 025 (std)
. = —

To forecast SEU effects, o oa
need to propagate high )
energy SPE H, He, C, O, Si,  =§)
Fe ions and GCR through ol
the Martian atmosphere s
and then through sensitive
systems
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Galileo Mission Dose Estimates
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Example of Galileo SEU trails near Europa

CCD IONIZATION TRAILS:

- Radiation exposure 1.7 s for bottom;
7.5 s for top. Pixels are 15x15x10
um.

- Top is raw image stretched to show
hits.

- Second is difference between raw
image and median filtered image to
emphasize hits.

- CCD protected by 1 cm of tantalum.
Hits are probably from secondaries
generated in tantalum.

- Taken ~10,000 km from Europa
(white spot in first picture).

- Last picture is blow up to show
upsets.

Courtesy Alan Delamere, Ball Aerospace, Ken Klaasen,
JPL
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Internal Electrostatic Discharge—
e Attack of the Killer Electrons...

CHARGED PARTICLE INTERACTIONS
PROTON/ELECTRON ENERGY vs PENETRATION DEPTH FOR AL DISCHARGES IN DIELECTRICS
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* WHAT ARE THE PRIMARY SPACE WEATHER/RADIATION CONCERNS FOR JPL
MISSIONS?

e SPACE RADIATION EFFECTS HAVE IMPACTED JPL MISSION OPS AND ARE
POTENTIALLY EXPENSIVE PROBLEMS

e THERE ARE STILL UNKNOWN EFFECTS OF SPACE WEATHER ON SPACE OPS

®* PROPER DESIGN AND FORE-KNOWLEDGE (CLIMATOLOGY AND REAL TIME
FORECAST) CAN LIMIT IMPACT OF RADIATION ON OPS

¢ WHAT CAN WE DO?

e DESIGN: EVALUATE THE MISSION AND OPS PLANS USING AN INTEGRATED
APPROACH THAT INCLUDES RADIATION EFFECTS

® BUILD: REQUIRE ADEQUATE TESTING (RECOMMEND ENGINEERING TEST
MODEL!) IN THE RELEVANT SPACE WEATHER AND RADIATION CONDITIONS
UNDER REALISTIC OPS

e | AUNCH: DEFINE SPACE RADIATION LAUNCH CRITERIA FOR JPL MISSIONS

® FLIGHT: DURING FLIGHT, EVALUATE EFFECTIVENESS OF RADIAITON
FORECASTS AND MITIGATION METHODOLOGIES ON OPS

- _POST FLIGHT: USE OPS EXPERIENCE TO UPDATE RADIATION MODE
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