Effects of the Magnetosphere and Lower Atmosphere on the Ionosphere-Thermosphere System

R.W. Schunk, L. Gardner, L. Scherliess, D.C. Thompson, J.J. Sojka & L. Zhu

Center for Atmospheric & Space Sciences Utah State University Logan, Utah

> Presented at: Space Weather Workshop April, 2009

USU Physics-Based Data Assimilation Models

- 1. Kalman Filter Models of the Ionosphere
 - o Gauss-Markov Model (GAIM-GM)
 - o Full Physics Model (GAIM-FP)
- 2. Ensemble Kalman Filter Model of High-Latitude Electrodynamics
- 3. Ensemble Kalman Filter Model of the Thermosphere

1. GAIM Basic Approach for Ionosphere

We use a physics-based ionosphere or ionosphereplasmasphere model as a basis for assimilating a diverse set of real-time (or near real-time) measurements. GAIM provides both specifications and forecasts on a global, regional, or local grid.

GAIM Assimilates Multiple Data Sources

- Data Assimilated Exactly as They Are Measured
 - Bottomside N_e Profiles from Digisondes (30)
 - Slant TEC from more than 1000 Ground GPS Receivers
 - N_e Along Satellite Tracks (4 DMSP satellites)
 - Integrated UV Emissions (LORAAS, SSULI, SSUSI, TIP)
 - Occultation Data (CHAMP, IOX, SAC-C, COSMIC)

Gauss-Markov Kalman Filter Model (GAIM-GM)

- Specification & Forecast of the Global Ionosphere
- Operational Model
- Global Mode
- Regional Mode
- Nested Grid Combines Global and Regional Modes
- 3-hour Latent Data Acceptance Window
- 24-hour Forcast

Gauss-Markov Kalman Filter Global Mode

- November 16, 2003
- GPS Ground TEC measurements from more than
 900 GPS Receivers (SOPAC Data Archive)
- Includes Receivers from:
 - → IGS
 - **→** CORS
 - **→** EUREF
 - → and others

Gauss-Markov Kalman Filter Reconstruction

Physics-Based Model Without Data

QuickTime™ and a Cinepak decompressor are needed to see this picture. Kalman Filter

More than 3000 Slant TEC Measurements are assimilated every 15 minutes.

Gauss-Markov Kalman Filter Regional Mode

- 3-D Ionospheric N_e Reconstruction over North America
- Large Geomagnetic Storm on November 20-21, 2003
- GPS Ground TEC Measurements from more than
 300 GPS Receivers over the continental US and Canada
- 2 Ionosondes at Dyess and Eglin
- → Observe large TEC Enhancements over the Great Lakes during November 20, 2003 @ 2000 UT.

NOAA CORS Data

- 332 Sites
- Dual-frequency Receivers
- Slant TEC

IFM

Kalman Filter Reconstruction

About 2000 Slant TEC Values are Assimilated every 15 min

GAIM-GM Nested Grid Capability

- Improved Spatial Resolution
 - 1° Latitude (variable)
 - 3.75° Longitude (variable)
- Usefulness Depends on Data
- Capability Already Exists in the GAIM-GM Operational Model
- In 2004 Run 11 ionosondes & 15 GPS in Nested Grid Region
- Captures Edge of Anomaly

2. Ensemble Kalman Filter for High-Latitude Electrodynamics

High-Resolution Specification of Convection, Precipitation, Currents, Magnetic Perturbations & Ionosphere Parameters

- Ground Magnetic Data from 100 Sites
- Cross-Track Velocities from 4 DMSP Satellites
- Line-of-Sight Velocities from the SuperDARN Radars
- In-situ Magnetic Perturbations from the 66 IRIDIUM Satellites

3. Ensemble Kalman Filter for the Global Thermosphere

High-Resolution Specification of Neutral Densities, Temperatures & Winds

Will be able to Assimilate:

- UV Emissions From Satellites
- In situ Densities & Winds
- Satellite Drag Data
- Deduced Neutral Parameters from ISR

Coupled Thermosphere-Ionosphere-Electrodynamics Data Assimilation Model

UtahStateUniversity

Waves are Generated at High Latitudes

Burch, J. L., *Scientific American*, 284, 72-80, 2001

- Bastille Day Storm
- July 14-15, 2000
- Snapshots During a 1-Hour Period

Mesoscale High-Latitude Structures

- Propagating Plasma Patches
- Propagating Atmospheric Hole
- Sun-Aligned Polar Cap Arcs
- Theta Aurora
- Boundary and Auroral Blobs
- Sub-Auroral Ion Drift Events (SAID)
- Storm Enhanced Densities (SED) Ridges

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Qaanaaq, Greenland, October 29, 1989

All-Sky Images (630 nm)

2 - Minute Interval

Global Thermosphere Simulation

Effect of Propagating Plasma Patches on High-Latitude Thermosphere

QuickTime™ and a GIF decompressor are needed to see this picture.

Neutral Density Perturbations Due to Plasma Patches

Shiokawa et al.: Traveling Ionospheric Disturbance: JAPAN

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. TEC
1000 GPS Sites

Mean Separation 25 km

1700 - 1740 UT

Upward Propagating Waves

Planetary Waves

- Large scale Global Oscillations
- Generated in Troposphere by Mountains
- Stationary or Zonal Propagation (2, 5, 10, 16 day periods)

• Tides

- Wavelengths of Several Thousand km
- Migrating and Non-migrating
- Periods of 24-hr and Harmonics

Gravity Waves

- Generated by Disturbances in the Troposphere
- Wavelengths of 5-1000 km
- Periods of 5 min to Several Hours

Effect of Lower Atmospheric Tides On the Ionosphere

IMAGE-FUV

4-Wave Structure

Immel et al. (2006)

30 Day Average Solar Maximum Equinox 20 Local Time 20 % Ne Change

Lower Atmosphere Models

MSIS

- Empirical Climate Model
- Ground to 600 km
- Provides Wave Fields at 90 km

• WACCM

- NCAR Climate Model
- Ground to 600 km
- Provides Wave Fields at 90 km

NOGAPS-ALPHA

- Navy's Troposphere Weather Model
- Extended to 120 km by NRL
- Provides Weather Disturbances

Global Thermosphere-Ionosphere Simulation Upward Propagating Waves

- Time-Dependent Global Run
- 49 Non-Uniform Altitude Layers from 97-600 km
- 3 deg in latitude, 5 deg in longitude
- WACCM Density Specified at 97 km
- 2 January 1997 24 Hour Run
- F10.7 = 150

NCAR - Hanli Liu

T_n Wave Structure

QuickTime™ and a BMP decompressor are needed to see this picture.

N_e Profiles with Upward Propagating Waves

N_e Variation 20-25 %

Wavelength ~ 2-4 km

Thermosphere - Ionosphere Modeling

- 1. Data Assimilation Models are Needed for Specifications
- 2. Coupled Physics-Based Models are Needed for Forecasts
- 3. Ensemble Model Forecasting is Needed
- 4. Planetary Waves & Tides are Relatively Easy to Incorporate
- 5. Gravity & Sound Waves are a Challenge
 - 1 km Vertical Resolution
 - 2 10 km Horizontal Resolution
 - Time Step less than a Minute

Physics-Based Model of the Thermosphere

- Numerical Solution of Neutral Gas Continuity, Momentum, and Energy Equations
- Time-Dependent, High-Resolution, Global Model
- Non-Hydrostatic Equilibrium
- Solved versus Altitude not Pressure
- 49, 60, 98 Non-Uniform Altitude Layers from 90-600 km
- 0.5, 0.1 deg in latitude, 3 deg in longitude
- Flux-Corrected-Transport (FCT) Numerical Method
- Rotating Coordinate System fixed to Earth
- Tidal and Gravity Wave Forcing from Below
- Driven by Time-Dependent and Self-Consistent Thermosphere-Ionosphere