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Space Weather Applications of Auroral
Precipitation Forecast/Nowcast?

*Provide location of ionospheric irregularities caused
by auroral precipitation which interfere with
communications/radar/GPS

*Provide accurate input to lonosphere—Thermosphere
(IT) predictive models, which propagate auroral
Impacts worldwide.

*Understand satellite anomalies caused by surface
charging



Why Do We Need Another
Precipitation Model?

*There are actually four different types of aurora

*Each type has a different dependence on
IMF/substorm cycle/Kp

*There are strong seasonal effects which are
different for each kind of aurora

*The aurora does not jump between a handful of
fixed levels



Types of Auroral Precipitation

Discrete (electron acceleration)

--Monoenergetic: Most of the energy flux is in one or two DMSP channels.
Source: quasi-static electric fields

--Broadband: Electron acceleration over three or more DMSP channels.
Source: Dispersive Alfvén waves (DAWS).

Diffuse (unaccelerated)
--Electron
--lon

Most of the energy flux is e, because the light e~ mass (and thus high v)
outweighs the higher ion energy density.



Example Of Monoenergetic Aurora
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Example of Broadband Dominated Aurora

Wave (broadband acceleration) Dominated Aurora

FZ '# 13 ......... Lot s s 4 s 4 o | . —— ..__. | ......... [ PP R bt s s o s 4 2 o e 1984/346
g g e i e A=Y e ‘E Dec 11
o ] . B i B - -

o = "
x|
z - - s = -.-__.:-__.:-- -- B ) -
. - T : ~ T Enell'g%?Flux
' o \'rn-r-\wp'a' nrzu &' 'Y 1
. g q\ﬁ
A M 7
R =
> O
o o °
i} w
z
w
o . 5
(@] . g o
| v . " . :
- 1rr_n- 1'11 e . = 4
0 -:1-}-"' i
o -
5 3
electrons ions
LX:F 14"3 géoo 14é%?é40 14; %3 20 14%%00 14‘}%')40 14,;,%%20 14'%§'00
LON 210.8 195.5 182.1 171.4 163.2 156.8 151.8 JHU/APL
MLAT 80.2 78.3 76.3 74.3 72.3 70.3 68.3

MLT 01:03 00:43 00:28 00:17 00:08 00:01 23:56



Examples of Broadband Accelerated
Electron Spectra
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L_ow-latitude Wave Aurora Near Substorm
Onset: Superposed Epoch Analysis
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substorms, Geophys. Res. Lett., 37, L06101, doi:10.1029/2009GL041680.



Criteria for Sorting Auroral Types

 Accelerated (or “discrete”) if 1 or more channel
has dj-/dE >108 eV/cm? s sr eV (necessary but
not sufficient condition)

» Monoenergetic (quasi-static electric fields) if
only 1 or 2 channels dominate (factor of 5 >
other channels)

« Broadband (“wave”) if 3 or more channels are
>2 X 108 eV/cm? s sr eV



Model Parameterization

Functional fit versus solar wind (rather than bins)
Each type of aurora fitted separately
Each MLT/MLAT bin fitted separately
Solar wind driving based on
dd,,o/dt = v, #3B23sin%3(6./2)

“Low” (or quiet) here is 0.25 <d®,,,/dt>
“High” (or active) here is 1.5 <d®,,./dt>



Model Construction

*4 auroral types x 96 MLT bins x 120 MLAT bins = 46,080 regression
equations

* Auroral power(mlat _bin, mlt bin, aurora_type) = a + b*d®d,,,/dt
* The same is done for number flux (46,080 more regressions)

* The probability of observing each type of electron aurora is also fit with a
similar regression equation.

 There is only one type of ion aurora, so there is no probability fit

« Total flux is the product of the probability of observing an aurora times the
flux when present.

* This can be evaluated for any solar wind history (the IMF for the last 3 hours
IS used here)



Monoenergetic Aurora Energy Flux tswew



Broadband (Wave) Aurora Energy FIux osscw




Diffuse e~ Aurora Energy Flux rzew



lon Aurora Energy Flux
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Broadband Aurora Energy Flux
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lon Aurora
Energy Flux

lon Aurora Energy Flux

12 1983 1
265
ergs/cm2 S
l 00 Total=2.3 GW
(a)
0.25 .
. L Low Solar Wind
I ‘ [&\/ Driving
0.0 '”
1
365
ergs/cm2 s
' 0.50 Total=4.9 GW
(b)
0.25

: High Solar Wind
Driving

4.9 GW
= Low X 2

9632 Satellite-days



Relative Contributions to Hemispheric
Precipitating Energy Flux

Aurora Hemispheric Hemispheric Power: Hemispheric Power:

Type Power: Quiet Active (Gigawatts)  All Conditions
(Gigawatts) Gigawatts

Diffuse (e-) 6.8 (63%) 20.2 (57%) 12.6 (61%)

Diffuse (ion) 2.3 (21%) 4.9 (14%) 3.4 (16%)

Monoenergetic 1.1 (10%) 5.8 (15%) 3.3 (16%)

Broadband 0.6 (6%) 4.8 (13%) 1.5 (6%)




Conclusions (Auroral Phenomenology)

Diffuse aurora contributes about 3/4 of the precipitating
energy flux averaged over all conditions

Contribution from acceleration rises with higher solar wind
Input (but remains less than half)

Wave aurora has the least energy flux, but rises fastest with
driving. Wave aurora energy flux most resembles substorms.

Although energy flux is mostly on the nightside, number flux
IS highest on the dayside.

As solar wind driving rises, nightside dominance increases
(eventually including even number flux).



Comparative Model Testing

« No existing precipitation model has undergone testing
for validation.

 |magers such as Polar UVI can estimate global
auroral power on a snapshot basis, and provide a
nighly useful validation standard.

« Polar UVI is not sensitive to electrons below a few
nundred eV, or to fluxes below about 0.25 ergs/cm? s.
Thus, even a model that perfectly predicted auroral
power would not perfectly agree with UVI.




19972/01/12
16:59:27
Filter:LBHL

30

Power observed by Polar UVI:
11.3 GW

=2 393—,Lu:;/"suoLoqd

Power predicted by Ovation Prime:
12.1 GW




Observed Polar UVI Power (GW)
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Polar UVI Hourly Nightside Average (GW)
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Conclusions (Model Performance)

« OVATION Prime permits auroral power to be predicted
based on upstream solar wind observations and performs
better than these two nowcasts, instantaneously.

* NOAA Hemispheric Power index regains the lead when
hour averages that include multiple passes are used.

* Nonetheless, the predictive ability of OVATION Prime Is
more timely than any nowcast.



Backup



Auroral Power from Polar UVI images
Correlates Well With d®,,./dt
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Seasonal Effects

 Previously, intense monoenergetic events were
shown to be 3 times more frequent in winter
than summer

 Total nightside auroral power Is modestly
higher in winter from global imagers (Polar
UVI, Pixie)



Diffuse Aurora Energy Flux in Local Winter and Summer
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Figure 1. Diffuse aurora hemispheric energy flux for local winter (top two plots) and local summer (bottom).
The left two plots are for low solar wind driving, the right two for high.



Diffuse Aurora Number Flux in Local Winter and Summer
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Figure 2. The diffuse aurora number flux for local winter (top two panels) and local summer
(bottom two), for low solar wind driving (left two) and high solar wind driving (right two).



Magnetosheath lons have Easier Access to lonosphere
in the Summer Hemisphere

lons can enter through cusp only where the bulk flow velocity
is lower than their thermal velocity



Monoenergetic Aurora Energy Flux in Local Winter and Summer
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Figure 3. Monoenergetic aurora energy flux for local winter (top two panels) and
summer (bottom two). Low solar wind driving is on the left, high driving on
the right.



Monoenergetic Aurora Number Flux for Local Winter and Summer
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Figure 4. Monoenergetic aurora number flux for local winter (top two panels) and
for summer (bottom two), under conditions of low solar wind driving (left two) and
high (right two).



Broadband (wave) Aurora Energy Flux in Local Winter and Summer
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Figure 5. Broadband (wave) aurora energy flux for local winter (top two panels) and
summer (bottom two). Low solar wind driving is on the left, high to the right.



Diffuse Electron Aurora Energy Flux (High solar wind driving)
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Figure 9. The diffuse electron aurora, under conditions of high solar wind driving, for all

four seasons. Excepting some dayside noise during spring, the season which stands out
is summer, with significantly lower nightside fluxes.



Monoenergetic Aurora Energy Flux (High Solar Wind Driving)
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Figure 10. Monoenergetic aurora energy flux for all four seasons under conditions of
high solar wind driving. Winter has the most monoenergetic aurora (on the nightside)
and summer the least.



Seasonal Effects Summary

Mono aurora has largest w/s ratio,1.7 (night)
Diffuse and wave are about 1.3 w/s (night)
lon effects are a few % (except on dayside)

Dayside has higher energy and especially
number flux in the summer (explicable)

The nightside effects are larger in energy than
number flux: 1mplies acceleration effect



Relative Contributions to Hemispheric
Precipitating Number Flux

Aurora Low SW Driving  High SW Driving All Conditions
Type

Diffuse (e-) 3.2x102° (60%) 5.4x102° (48%) 4.1x10% (55%)
Diffuse (ion)  2.4x10%* (5%) 4.1x10%* (4%) 3.1x10%* (4%)
Monoenergetic  1.1x1025(21%) 2.3x1025(21%) 1.6x102%° (21%)
Broadband 7.6x102% (14%) 3.1x102° (28%) 1.5x10%° (20%)
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