Space Weather Impacts and Needs for Future Commercial Space Operations

Karen Shelton-Mur
FAA/Office of Commercial Space Transportation (AST)
Space Transportation Development Division
Space Weather Workshop (SWW), April 24-27, 2012
Agenda

• FAA/AST’s Background and Authority
• Commercial Space Transportation (CST) Activity
• Emerging Science Payload Market
• SWx Considerations for CST Operations
• How to Prepare for Future Commercial Spaceflight
• FAA/AST Space Weather Initiatives
• Conclusion
Background

• The U.S. space program today has 3 sectors:
 – Civil
 – Military
 – Commercial

• The commercial sector was created in 1984 with the passage of the Commercial Space Launch Act; and

• Regulatory oversight for the commercial sector was delegated to the Associate Administrator for Commercial Space Transportation (AST).

• Today, AST makes up one of the three lines of business within the FAA.
DOT Authority: *Title 51 U.S. Code Subtitle V, Ch. 509*

- **Protect** the public, property, and the national security and foreign policy interests of the U.S.
- Oversee and coordinate *commercial launch and reentry operations* including those with *crew and space flight participants*.
- Issue *permits and licenses* and transfer licenses authorizing those operations.
- **Promote economic growth** and entrepreneurial activity through the use of the space environment for peaceful purposes.
- **Encourage the U.S. private** sector to provide launch vehicles, reentry vehicles and associated services.
- **Facilitate the strengthening and expansion** of U.S. space transportation infrastructure.
What types of activities is AST involved in?

Launch Site Licenses
Launch/Reentry Licenses
Experimental Permits
Safety Inspections
Safety Approvals
Regulations/Guidelines

Sea Launch

Launch Sites

Expendable Launch Vehicles

Reusable Launch Vehicles
Current Number of Commercial Launch Licenses, Experimental Permits, and Launch Site Licenses

• **Active Launch Licenses:**
 – Since 1984 - 205 successful launches
 – 15, #15 launch license issued to Space X for its Falcon 9, ELV

• **Active Experimental Permits:**
 – Since 2004 - 22 Successful experimental permit flights
 – 1, Blue Origin

• **Active Launch Site Operator Licenses:**
 – 8, Kodiak, California, Mojave, Spaceport America, Oklahoma, Mid-Atlantic, Cecil Field, and Florida

• **Commercial Astronaut Wings:**
 – 2, Michael Melville and Brian Binnie of Scaled Composites
 – Major milestone officially recognized by AST
For a licensed launch or reentry:

- Flight safety analysis of a proposed launch or reentry vehicle from a specific launch or reentry site is performed
- ATO provides deconfliction of air traffic
- Other USG entities provide deconfliction of sea traffic, as well as launch and range support and collision avoidance

Example: East Coast (Florida) Launch

- 3+ hour launch window
- Affected nearly 200 flights
- Ensured safety of the public

Example: West Coast Reentry

- Analysis allowed for smaller hazard area
- Affected 41 flights
- Moved activity to less dense air routes
- Ensured safety of the public
Suborbital/Orbital Reusable Launch Vehicles (RLVs) – Space Tourism

Virgin Galactic’s WhiteKnightTwo and VSS Enterprise

Blue Origin’s New Shepard

XCOR’s Lynx

Stratolaunch Systems
Orbital Reusable Launch Vehicle Activity (cont.) – Commercial Crew Development Program (CCDEV)

- Boeing’s CST-100
- Space-X Dragon Capsule
- Blue Origin Crew Transportation System
- Sierra Nevada Corporation Dream Chaser
Suborbital/Orbital Science Payload Market

Flight Opportunities Program –
• Integrate and fly technology payloads on commercial suborbital reusable platforms that carry payloads near the boundary of space

Seven companies selected:
- Armadillo Aerospace, Heath, Tx.
- Near Space Corp., Tillamook, Ore.
- Masten Space Systems, Mojave, Calif.
- Up Aerospace Inc., Highlands Ranch, Colo.
- Virgin Galactic, Mojave, Calif.
- Whittinghill Aerospace LLC, Camarillo, Calif.
- XCOR, Mojave, Calif.

• Virgin Galactic
 • Southwest Research Institute has signed up two payload specialists to conduct biomedical monitoring, atmospheric imaging, and microgravity planetary regolith experiments.

• SpaceX
 • Proposing to use Dragon for research applications independent of the ISS.
 • DragonLab, a free-flying version of its spacecraft designed to carry a variety of experiments that can be returned to Earth.
 • The company has booked two DragonLab flights on its launch manifest, in 2012 and 2013.
Space Weather (SWx) Considerations for Future Commercial Space Operations

SWx impacts will differ for suborbital vs orbital flight & are dependent on altitude, launch latitude, orbital inclination, duration of mission, solar cycle, & solar activity

– Sub-orbital Regime
 • Space Flight Participants: Probably one-time, short duration exposure
 • Crew: Repeated or frequent short duration exposure

– Orbital Regime
 • Longer duration and increased radiation exposure for crew and space flight participants
 • Crew: Repeated exposure
 • Radiation exposure would depend on inclination, Vehicle Shielding, Vehicle orientation, & location within vehicle
 • Vehicle Components and length of time in Orbit
 • Single Event Effects on electronics
 • Material degradation

For human spaceflight, launch operator is responsible for understanding risks associated with launch and reentry of the vehicle and informing crew and spaceflight participants of these risks
Way forward: How to prepare for future commercial space transportation (human spaceflight)?

• Educate AST & Launch Operator on SWx risks:
 – Develop in house checklist for events/parameters that could impact suborbital and orbital flights
 – Provide information to the launch operator on where to obtain SWx information

• Continue collaboration/partnering with NOAA SWPC, NASA GSFC & NASA LaRC, and the OFCM
 – Initiate opportunities for collaboration/partnering with other government agencies such as NASA/JSC Space Radiation Analysis Group (SRAG), DoD’s Air Force Weather Agency, AFRL, & NRL

• Work with the space weather providers to identify products that could be useful for commercial space transportation

• Educate SWx Community on commercial space activities and opportunities for furthering research/validation of space weather
Commercial Space Transportation Initiatives

Center of Excellence – Commercial Space Transportation
http://www.coe-cst.org/

TASK 186 - Mitigating threats through space environment modeling/prediction

•Goal: Predict the environmental conditions needed for safe orbital, sub-orbital, re-entry, descent, and landing

•Objectives: Develop a “weather” (terrestrial weather and space weather) prediction model extending from Earth’s surface to the edge of space (~600km)

Space Transportation Infrastructure Grants Program:
FY 2012 – Federal Register Notice published 3/9/12
Submission Open Period March 8, 2012

Conclusions

- Commercial Human Space Flight -- is well underway.

- Congress, through the Commercial Space Launch Amendments Act, has directed the FAA to “encourage, facilitate, and promote” this new activity in a way that continuously improves its safety through regulation and licensing activities.

- Critical to safety is integration of comprehensive, relevant, timely space weather information

- AST is committed to doing its part to enable this exciting new industry but needs to partner and collaborate with the space weather community to ensure the success of the industry.
QUESTIONS?
Background Slides
Types of Licenses

- **Launch License (for Expendable Launch Vehicles).**
 - *Launch-specific license* authorizes a specific launch or multiple launches with nearly identical parameters (vehicle design, launch location, trajectory, payload, etc.).
 - *Launch Operator license* authorizes launches of range of payloads and trajectories for a family of vehicles from the same site.

- **Reusable Launch Vehicle (RLV) Mission Licenses.**
 - *Mission-specific license* authorizes a licensee to launch and reenter one model (may authorize more than one RLV mission, but identifies each flight).
 - *Operator license* authorizes a licensee to launch and reenter any of a designated family of RLVs within authorized parameters, including launch sites and trajectories, transporting specified classes of payloads to any reentry site or other location designated in the license.

- **Reentry Licenses.**
 - *Reentry-specific license.*
 - *Reentry-operator license.*

- **Launch or Reentry Site Operator License.**
 - Authorizes operation of a launch or reentry site.
Active Launch Licenses: 15

<table>
<thead>
<tr>
<th>License</th>
<th>Company</th>
<th>Vehicles</th>
<th>Location</th>
<th>Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLS 11-075 (PDF)</td>
<td>Orbital</td>
<td>Taurus II</td>
<td>Wallops, VA</td>
<td>Aug. 04, 2012</td>
</tr>
<tr>
<td>LLS 11-077 (PDF)</td>
<td>Orbital</td>
<td>Taurus II</td>
<td>Wallops, VA</td>
<td>Sep. 01, 2012</td>
</tr>
<tr>
<td>RLS 11-002 (PDF)</td>
<td>SpaceX</td>
<td>Dragon Reentry Capsule</td>
<td>Pacific Ocean</td>
<td>May 24, 2013</td>
</tr>
<tr>
<td>LLO 04-069 (PDF)</td>
<td>Orbital</td>
<td>Pegasus</td>
<td>Reagan TS</td>
<td>Jul 22, 2014</td>
</tr>
<tr>
<td>LLO 00-048 (PDF)</td>
<td>BLS</td>
<td>Delta II</td>
<td>VAFB, CA</td>
<td>Jan. 02, 2015</td>
</tr>
<tr>
<td>LLO 00-051 (PDF)</td>
<td>Orbital</td>
<td>Taurus</td>
<td>VAFB, CA</td>
<td>Apr. 25, 2015</td>
</tr>
<tr>
<td>LLO 00-053 (PDF)</td>
<td>Orbital</td>
<td>Pegasus</td>
<td>VAFB, CA</td>
<td>Sep. 01, 2015</td>
</tr>
<tr>
<td>LLO 01-058 (PDF)</td>
<td>Orbital</td>
<td>Pegasus</td>
<td>Wallops, VA</td>
<td>Mar. 16, 2016</td>
</tr>
<tr>
<td>LLO 01-059 (PDF)</td>
<td>Orbital</td>
<td>Pegasus</td>
<td>CCAFS, FL</td>
<td>Mar. 17, 2016</td>
</tr>
<tr>
<td>LLO 01-060 (PDF)</td>
<td>BLS</td>
<td>Delta II</td>
<td>CCAFS, FL</td>
<td>Apr. 30, 2016</td>
</tr>
<tr>
<td>LLO 02-066 (PDF)</td>
<td>Energia</td>
<td>Zenit 3SL</td>
<td>Pacific Ocean</td>
<td>Jun. 21, 2016</td>
</tr>
<tr>
<td>LLO 01-062 (PDF)</td>
<td>BLS</td>
<td>Delta IV</td>
<td>CCAFS, FL</td>
<td>Sep. 05, 2016</td>
</tr>
</tbody>
</table>

15th License
LLS 12-079
Space X, Falcon 9
Active Launch Site Operator Licenses: 8
Commercial Astronaut Wings: 2

<table>
<thead>
<tr>
<th>Licenses</th>
<th>Operator</th>
<th>Site</th>
<th>Location</th>
<th>Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSO 02-007 (PDF)</td>
<td>Virginia Commercial Space Flight Authority</td>
<td>Wallops</td>
<td>VA</td>
<td>Dec. 18, 2012</td>
</tr>
<tr>
<td>LSO 01-005 (PDF)</td>
<td>Spaceport Systems International</td>
<td>VAFB</td>
<td>CA</td>
<td>Sep. 18, 2016</td>
</tr>
<tr>
<td>LSO 06-010 (PDF)</td>
<td>Oklahoma Space Industry Development Authority</td>
<td>Burns Flat</td>
<td>Oklahoma</td>
<td>Jun. 11, 2016</td>
</tr>
<tr>
<td>LSO 10-014 (PDF)</td>
<td>Space Florida</td>
<td>CCAFS</td>
<td>FL</td>
<td>Jun. 30, 2015</td>
</tr>
<tr>
<td>LSO 09-012 (PDF)</td>
<td>Jacksonville Aviation Authority</td>
<td>Cecil</td>
<td>Florida</td>
<td>Jan. 10, 2015</td>
</tr>
<tr>
<td>LSO 04-009 (PDF)</td>
<td>East Kern Airport District</td>
<td>Mojave</td>
<td>VA</td>
<td>Jun. 16, 2014</td>
</tr>
<tr>
<td>LSO 08-011 (PDF)</td>
<td>New Mexico Spaceflight Authority</td>
<td>SpAmerica</td>
<td>New Mexico</td>
<td>Dec. 14, 2013</td>
</tr>
<tr>
<td>LSO 03-008 (PDF)</td>
<td>Alaska Aerospace Development Corporation</td>
<td>Kodiak</td>
<td>AK</td>
<td>Sep. 24, 2013</td>
</tr>
</tbody>
</table>

FAA Commercial Astronaut Wings Issued: 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Vehicle</th>
<th>Mission</th>
<th>Max Altitude</th>
<th>Location</th>
<th>Flight Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Melvill</td>
<td>SpaceShipOne</td>
<td>Flight 15P</td>
<td>328,491 ft.</td>
<td>Mojave, CA</td>
<td>21 June 2004</td>
</tr>
<tr>
<td>Brian Binnie</td>
<td>SpaceShipOne</td>
<td>Flight 17P</td>
<td>367,442 ft.</td>
<td>Mojave, CA</td>
<td>04 October 2004</td>
</tr>
</tbody>
</table>
Permitted Launches: 22
Active Experimental Permits: 1

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Vehicle</th>
<th>Company</th>
<th>Site</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Aug 24, 2011</td>
<td>PM 2</td>
<td>Blue Origin</td>
<td>West Texas</td>
<td>Flight Test</td>
</tr>
<tr>
<td>21</td>
<td>May 06, 2011</td>
<td>PM 2</td>
<td>Blue Origin</td>
<td>West Texas</td>
<td>Flight Test</td>
</tr>
<tr>
<td>19</td>
<td>Oct 24, 2008</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: Northrop Grumman Lunar Lander Challenge</td>
</tr>
<tr>
<td>18</td>
<td>Oct 24, 2008</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: Northrop Grumman Lunar Lander Challenge</td>
</tr>
<tr>
<td>16</td>
<td>Oct 24, 2008</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: Northrop Grumman Lunar Lander Challenge</td>
</tr>
<tr>
<td>15</td>
<td>Oct 28, 2007</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Holloman</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>14</td>
<td>Oct 28, 2007</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Holloman</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>13</td>
<td>Oct 27, 2007</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Holloman</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>12</td>
<td>Oct 27, 2007</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Holloman</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>11</td>
<td>Oct 20, 2007</td>
<td>MOD-1</td>
<td>Armadillo Aerospace</td>
<td>Oklahoma</td>
<td>Flight Test</td>
</tr>
<tr>
<td>10</td>
<td>Jun 02, 2007</td>
<td>QUAD</td>
<td>Armadillo Aerospace</td>
<td>Oklahoma</td>
<td>Flight Test</td>
</tr>
<tr>
<td>9</td>
<td>Jun 02, 2007</td>
<td>QUAD</td>
<td>Armadillo Aerospace</td>
<td>Oklahoma</td>
<td>Flight Test</td>
</tr>
<tr>
<td>8</td>
<td>Apr 19, 2007</td>
<td>PM 1</td>
<td>Blue Origin</td>
<td>West Texas</td>
<td>Flight Test</td>
</tr>
<tr>
<td>7</td>
<td>Mar 22, 2007</td>
<td>PM 1</td>
<td>Blue Origin</td>
<td>West Texas</td>
<td>Flight Test</td>
</tr>
<tr>
<td>6</td>
<td>Nov 13, 2006</td>
<td>PM 1</td>
<td>Blue Origin</td>
<td>West Texas</td>
<td>Flight Test</td>
</tr>
<tr>
<td>5</td>
<td>Oct 21, 2006</td>
<td>QUAD</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>4</td>
<td>Oct 21, 2006</td>
<td>QUAD</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>3</td>
<td>Oct 21, 2006</td>
<td>QUAD</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>2</td>
<td>Oct 20, 2006</td>
<td>QUAD</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
<tr>
<td>1</td>
<td>Oct 19, 2006</td>
<td>QUAD</td>
<td>Armadillo Aerospace</td>
<td>Las Cruces</td>
<td>Flight Test: XPrize Cup Competition</td>
</tr>
</tbody>
</table>
Commercial/Government/Private and Proposed U.S. Launch Sites

Key:
- U.S. Federal Launch Site
- Non-Federal FAA-Licensed Launch Site
- Owned by University of Alaska Geophysical Institute
- Sole Site Operator
- AST Field Offices

Other spaceports have been proposed by: Alabama, Washington, Hawaii, Wisconsin, Wyoming, Indiana, Colorado and multiple locations in Texas.
Potential Space weather needs for commercial space operators in LEO

- Total dosage of charge particles
- Timing/duration of Proton events
- Changes in energetic particle densities
- Timing/duration of communication/navigation disruptions
FAA Integrated Efforts – **Launch**

For a licensed launch:
- AST performs flight safety analysis of a proposed launch vehicle from a specific launch site
- ATO provides deconfliction of air traffic
- Other USG entities provide deconfliction of sea traffic, as well as launch and range support and collision avoidance

Example: East coast (Florida) launch
- 3+ hour launch window
- Affected nearly 200 flights
- Ensured safety of the uninvolved public
For a licensed reentry:

- AST performs a flight safety analysis of proposed reentry vehicle to a specific reentry area
- ATO provides deconfliction of air traffic
- Other USG entities provide deconfliction of sea traffic, as well as reentry support
What about On-Orbit?

- The Secretary (DOT) has no authority to license or regulate activities that take place between the end of the launch phase and the beginning of the reentry phase, such as maneuvers between two Earth orbits or other non-reentry operations in Earth orbit; or after the end of a launch phase in the case of missions where the payload is not a reentry vehicle.

- For purposes of an ELV launch, flight ends:
 After the licensee’s last exercise of control over its launch vehicle.
 - For orbital, this is usually safing of the upper stage.
 - For suborbital, impact.

- For purposes of a RLV launch, flight ends:
 After the licensee’s last exercise of control over its launch vehicle.
 - For suborbital, upon landing when the vehicle comes to a stop and the vehicle is safed.
 - For orbital, after deployment of a payload for an RLV having payload deployment as a mission objective; or,
 - Upon completion of the first sustained, steady-state orbit at its intended location for an RLV not having payload deployment as a mission objective.
NASA and FAA Approach to Human Safety

• NASA and FAA approaches to human safety are based on their respective missions
• Different missions lead to different approaches

• Regulator for a new, broad and varied industry
• Charged with allowing the industry to develop
• Focused only on the safety of public and spacecraft occupants (crew only)
• Mission success is launch customer’s requirement
• Results in regulations that are more general and performance based

• Customer with a system level need (support ISS)
• Detailed system requirements
• NASA has its own requirements for the safety of its crews
• Willing and able to pay for top quality systems
Human Spaceflight Regulations – 14 CFR §460

• Phased approach in regulation of human space flight due to emerging commercial space industry

• Establishes requirements for crew and space flight participants (passengers) involved in private human space flight.

 – Applies to protection of the uninvolved public.
 – Enables passengers to make informed decisions about personal safety by requiring that the launch operator inform them of the risks associated with launch/reentry (informed consent).
 – Training for crew and space flight participants
 – Medical qualifications for crew

• *FAA is restricted from issuing regulations (Until October 2015) regarding vehicle design or operations unless:

 – There has been a serious or fatal injury or close call to crew or space flight participants during a licensed or permitted flight. After October 2015, the FAA may propose regulations without restriction.
 – Must take into consideration the evolving standards of safety in the commercial space flight industry.

*Recently extended moratorium is intended to allow the industry to mature before the FAA issues regulations covering passenger and crew safety