Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications and Forecasts

Utah State University

R. W. Schunk, L. Scherliess, V. Eccles, L. C. Gardner, J. J. Sojka and L. Zhu

Jet Propulsion Laboratory

X. Pi, A. J. Mannucci, B. D. Wilson, and A. Komjathy

University of Southern California

C. Wang and G. Rosen

Space Weather Workshop April 16-19, 2013 Boulder, Colorado

NASA/NSF Collaborative Space Weather Modeling Program

Science Focus

- Elucidate the fundamental physical, chemical, and coupling processes that operate in the I-T-E system for a range of actual, global-scale, space weather events, including storms & substorms.
- Identify the spatial and temporal scales over which mass, momentum, and energy flow in the system.
- Determine the effect that *plasma and neutral gas structures* (100-1000 km) have on global-scale flows.

Model Construction

Construct a *Multimodel Ensemble Prediction System (MEPS)* for the lonosphere-Thermosphere-Electrodynamics (I-T-E) system that will incorporate existing, first-principles-based, data assimilation models with different physics, numerics and initial conditions.

MEPS will allow ensemble modeling with different data assimilation models.

Data Assimilation Models

- GAIM-BL → Mid & Low Latitudes
 GAIM-GM → Mid & Low Latitudes
 GAIM-4DVAR → Mid & Low Latitudes, with Drivers
 GAIM-FP → Mid & Low Latitudes, with Drivers
 IDED-DA → High Latitudes, with Drivers
 Mid-Low Electro-DA → Ionosphere with Drivers
 GTM-DA → Global Thermosphere
- Global, Regional & Nested GRID Capabilities
- GAIM-GM & GAIM-BL are Operational Models
- Specifications & Forecasts

GAIM-BL Ionosphere Reconstructions

- GAIM-BL assimilated ground-based and spaceborne (COSMIC) GPS data.
- August 7, 2006 storm
- Data assimilation reveals storm-time enhanced zonal E-field and equatorial anomaly.

GAIM-GM Nested Grid Capability

- Improved Spatial Resolution
 - 1° Latitude (variable)
 - 3.75° Longitude (variable)
- Usefulness Depends on Data
- Capability Since 2004 in GAIM-GM Operational Model
- In 2004 Run 11 ionosondes &
 15 GPS in Nested Grid Region
- Captures Edge of Anomaly

Ionosphere Reconstructions With Self-Consistent Drivers GAIM-FP → Regional Run (Ensemble Kalman Filter)

- Snapshots of TEC measurements (left)
- GAIM-FP reconstruction (middle)
- GAIM-FP neutral wind at 300 km (right)
- 17:00 UT, day 82, 2004

Ionosphere Reconstructions With Self-Consistent Drivers GAIM - 4DVAR

- Estimate equatorial electric field/plasma drift, ion production factor, and wind.
- Black circles indicate ISR measurements made at the Jicamarca Radio Observatory
- Blue curve is an empirical model result
- Red curve presents estimated vertical drift and a single-ion production factor
- Data assimilation helps GAIM catch the pre-reversal enhancement [Pi et al., 2008].

Ionosphere-Electrodynamics Reconstructions (Mid & Low Lat. Electrodynamics – DA)

- Observed foF₂ at Jicamarca (left)
- Modeled foF₂ using Scherliess and Fejer plasma drifts (center)
- Derived foF₂ using an ensemble data assimilation model (right)
- Captures lunar and solar tides

(Eccles et al., 2011)

Global Thermosphere Reconstructions GTM-DA

(Ensemble Kalman Filter)

Global O/N₂ reconstruction from an ensemble Kalman Filter GTM-DA run

Synthetic SSUSI O/N₂ observations from 3 DMSP satellites were assimilated

Ensemble Kalman Filter for High-Latitude Electrodynamics & Ionosphere (IDED-DA)

High-Resolution Specification of Convection, Precipitation, Currents & Ionosphere

Runs on 30 CPUs

Physics-Based Model

Time-Dependent Ionosphere Model

- 0 3-D Density Distributions (NO⁺,O₂⁺,N₂⁺,O⁺,H⁺,He⁺)
- 0 3-D T_e and T_i Distributions
- o Ion Drifts Parallel & Perpendicular to B
- 0 Hall & Pedersen Conductances

M-I Electrodynamics Model

- 0 MHD Transport Equations & Ohm's Law
- Alfven Wave Propagation
- O Active Ionosphere
- 0 10 km & 5 sec Resolutions
- **O Potential, E-field, Currents, Joule Heating**

Magnetic Induction Model

- O Calculates B Perturbations in Space & on Ground
- o Includes Earth's Induction Effect

Data Assimilated in Model Runs

- Ground Magnetic Data from 100 Sites
- Cross-Track Velocities from 4 DMSP Satellites
- Line-of-Sight Velocities from 9 SuperDARN Radars
- In-situ Magnetic Perturbations from the 66 IRIDIUM Satellites

Output of the Ionosphere Dynamics & Electrodynamics Data Assimilation Model

- Electric Potential
- Convection Electric Field
- Energy Flux and Average Energy of Precipitation
- Field-Aligned and Horizontal Currents
- Hall and Pedersen Conductances
- Joule Heating Rates
- 3-D Electron and Ion Densities
- 3-D Electron and Ion Temperatures
- TEC
- Ground and Space Magnetic Disturbances

Ionosphere-Electrodynamics Reconstructions IDED-DA

Storm Period 2000/043 16:00 UT

- Northern polar region
- Storm period 2000/43 12:00 UT

Note Structure

Plasma Patch Dynamics IDED-DA

- Quiet to moderately disturbed geomagnetic conditions.
- Iono-Electro Model assimilated magnetometer data.
- Ionosphere Forecast Model (IFM) was run in 1 deg by 1 deg resolution (it can be run at higher resolutions)
- IFM used Electro results (5 minute cadence)
 - convection potential
 - precipitation fluxes
 - precipitation characteristic energy

IMF change from southward to northward Bz produced plasma patches

Data Sources for MEPS

Table 1. Data Sources that our new Data Assimilation System will assimilate

Ionosphere	Electrodynamics	Thermosphere
Ground-Based GPS-TEC	Ground magnetometers	Satellite UV emissions
Satellite-Based GPS	DMSP cross-track	In situ neutral densities and
Occultation	velocities	winds
Ionosonde and Digisonde	SuperDARN line-of-sight	Satellite accelerometer and
	velocities	drag
In situ N _e	Iridium magnetometers	FPI winds
911Å, 1356Å, limb, disk (UV)	ACE IMF, Dst	ISR Neutral parameters
Solar UV, EUV	Solar UV, EUV	Solar UV, EUV

Black: Data sources already being assimilated; Red: New data sources to be assimilated

Summary

- MEPS → ensemble modeling with different data assimilation models
- Data assimilation on multiple spatial & temporal scales
- Wide range of ground and space data
- An important tool for studying basic physics
- Can combine different data sets into a coherent picture
- Fills in regions where there are no data
- Can be used to study unresolved problems
- New approach to specifications and forecasts