State of the Space Weather Prediction Center 2009

Thomas J Bogdan
Space Weather Program Manager
Space Weather Prediction Center Director

Mission
To deliver space weather products and services that meet the evolving needs of the nation

Vision
A nation prepared to mitigate the effects of space weather through the understanding and use of actionable alerts, forecasts, and data products

Safeguarding Our Nation’s Advanced Technologies
Our Corporate Values

- Quality service and support to our customers and partners
- A diverse, innovative, and empowered workforce
- A science based approach to meeting our mission and goals
- A secure and robust information technology infrastructure
- Open exchange of data, information, and ideas
Timeline of Key Events

- Moved from OAR to NWS, January 2005
- Bogdan becomes Director, May 2006
- First Space Weather Enterprise Forum, April 2007
- SEC to SWPC name change, July 2007
- NWSEO Steward named, July 2007
- Reorganization in place, October 2007
- Reorganization official, February 2008
- Last Ops Spec converted to forecaster, March 2008
- First Strategic Plan Completed, June 2008
- This review, June 2009

Safeguarding Our Nation’s Advanced Technologies
PPBES 101

• Planning, Programming, Budgeting & Execution System
• Based on 5-year “planning cycles”. i.e.,
 • FY2009-2011 We are EXECUTING this one now
 • FY2010-2014 This one is waiting on CONGRESSIONAL ACTION
 • FY2011-2015 This one is coming out of the NOAA BUDGETING office
 • FY2012-2016 And this one is under active NOAA PLANNING
• Brought to NOAA by VADM Lautenbacher from DoD
• This is formally defined as a “MATRIX MANAGEMENT SYSTEM”, meaning
 • (Usually) Different people PLAN, PROGRAM from those who EXECUTE
 • But, the BUDGET people are largely the same and different from the rest

Safeguarding Our Nation’s Advanced Technologies
Execution Organization

Planning Programming Budgeting & Execution System

Safeguarding Our Nation’s Advanced Technologies
Planning, Programming, and Budgeting Organization

Planning Programming Budgeting & Execution System

Safeguarding Our Nation’s Advanced Technologies
Mission

To provide space weather products and services that meet the evolving needs of the nation

Office of the Directorate
Tom Bogdan

Coordinate Administer Manage
Collaborate Lead

Space Weather Services Branch
Rodney Viereck

Assess
Survey
Analyze
Evaluate
Recommend

Transition
Design
Fabricate
Test
Install

Provide
Deliver
Forecast
Validate
Verify

Customer Focus Section
Doug Biesecker

Product Services Section
Steve Hill

Forecast Office
Chris Balch (Acting)

Assist Facilitate Support
Maintain Enable

Administrative & Technical Support Branch
Kent Doggett

Plan
Execute
Strategic Direction Team
Project Management Team
New Customers

Growth in SWPC Web Hits During Solar Cycle 23

Safeguarding Our Nation’s Advanced Technologies
Some Great Teams
My Personal Values

- Always do your best
- Be impeccable with your word
- Do not make assumptions
- Do not take anything personally
- Always be a team player first
What’s a Hedgehog Concept?

The **Fox** knows many things, but the hedgehog knows one big thing. The fox is a cunning creature, able to devise a myriad of complex strategies for sneak attacks on the hedgehog.

Hedgehogs, on the other hand, simplify a complex world into a single organizing idea, a basic principle or concept that unifies everything. For a hedgehog, anything that does not somehow relate to the hedgehog idea has no relevance.

Safeguarding Our Nation’s Advanced Technologies
SWx’s Hedgehog Concept

What drives our economic engine

What can we be the best in the world at

What are we deeply passionate about

Serving our customers
Understanding our science
Creating our products
Delivering our data

Serving our customers
Creating our products
Delivering our data

Serving our customers
Creating our products
Delivering our data

...is to improve our customer service by creating new space weather PREDICTION models and forecast capabilities!
SWx’s Hedgehog Concept

...is to improve our customer service by creating new space weather PREDICTION models and forecast capabilities!

• Observations & Data
• Space environment awareness
• Transition to operations of numerical space weather prediction models for prognostic guidance [R2O]
• Model validation & verification [V+V]
• Forecast and Product creation & delivery [FORECASTS]
• Customer feedback to SWPC
• Operations to research feedback [O2R]
• Data stewardship, archive and access [A&A]
• Targeted research and development [R&D]

Safeguarding Our Nation’s Advanced Technologies
<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>Tomorrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations & Data</td>
<td>SWPC</td>
<td>NESDIS, OSDPD, OSO, NGDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NWS, OOS</td>
</tr>
<tr>
<td>Transition to operations of numerical space weather prediction models for prognostic guidance [R2O]</td>
<td>SWPC</td>
<td>NWS/NCEP, SWPC, EMC, NCO</td>
</tr>
<tr>
<td>Space environment awareness</td>
<td>SWPC</td>
<td>NWS/NCEP, SWPC</td>
</tr>
<tr>
<td>Model validation & verification [V+V]</td>
<td>SWPC</td>
<td>NWS/NCEP, SWPC</td>
</tr>
<tr>
<td>Forecast and Product creation & delivery [FORECASTS]</td>
<td>SWPC</td>
<td>NWS/NCEP, SWPC, NCO</td>
</tr>
<tr>
<td>Customer feedback to SWPC</td>
<td>SWPC</td>
<td>NWS/NCEP, SWPC</td>
</tr>
<tr>
<td>Operations to research feedback [O2R]</td>
<td>SWPC</td>
<td>NWS/NCEP, SWPC</td>
</tr>
<tr>
<td>Data stewardship, archive and access [A&A]</td>
<td>SWPC, NESDIS, NGDC</td>
<td>NESDIS, NGDC</td>
</tr>
<tr>
<td>Targeted research and development [R&D]</td>
<td>OAR, CIRES, SWPC</td>
<td>OAR, CIRES, ESRL</td>
</tr>
</tbody>
</table>
Budget Numbers

<table>
<thead>
<tr>
<th></th>
<th>FY 05</th>
<th>FY 06</th>
<th>FY 07</th>
<th>FY 08</th>
<th>FY 09</th>
<th>FY 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>President’s Request</td>
<td>$7.5M</td>
<td>$7.2M</td>
<td>$7.3M</td>
<td>$6.1M</td>
<td>$6.4M</td>
<td>$9.4M</td>
</tr>
<tr>
<td>House Mark</td>
<td>$7.5M</td>
<td>$7.2M</td>
<td>$5.0M</td>
<td>$6.1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senate Mark</td>
<td>$5.0M</td>
<td>$7.0M</td>
<td>$7.3M</td>
<td>$6.1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enacted</td>
<td>$6.8M</td>
<td>$3.9M</td>
<td>$3.9M</td>
<td>$6.1M</td>
<td>$6.4M</td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td>$5.9M</td>
<td>$7.1M</td>
<td>$6.4M</td>
<td>$7.6M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oceanic & Atmospheric Research

National Weather Service

Safeguarding Our Nation’s Advanced Technologies
L1 Solar Wind Monitor Update: CSESMO

OFCM led Committee for Space Environment Sensor Mitigation Options (CSESMO) to provide recommendations to OSTP and OMB in September 2009 (FY11)

GOES 11/12/13 IN GEOSTATIONARY ORBIT

ABOUT 1% OF THE DISTANCE FROM THE EARTH TO THE SUN, ACE IS OUR SPACE WEATHER SENTINEL.

Safeguarding Our Nation’s Advanced Technologies
L1 Solar Wind Monitor

- DSCOVR Trilateral Partnership
 - USAF: Launch Vehicle?
 - NASA: DSCOVR spacecraft?
 - NOAA: Refurbishment, O+M Costs?
 - Fate of the TRIANA Climate Sensors?
- Commercial Data Buy

Safeguarding Our Nation’s Advanced Technologies
An R2O Roadmap

1. Solar Wind Disturbance Propagation Model

2. Energetic Particle Transport Model

3. Geospace Response Model

4. Solar Irradiance Prediction Model

5. Solar General Circulation Model

Supplies forecasts for NASA Moon/Mars/Interplanetary Missions

Supplies forecasts for Earth-based customers

Solar Cycle Prediction

Solar Flares/TSI Variation

Coronal Mass Ejections/High-Speed Streams/Co-rotating Interaction Regions

Solar Energetic Particle Events Galactic Cosmic-Ray Modulation
A Vision for NOAA’s Space Weather Modeling

• Current space weather numerical prediction models are empirical and driven by observed statistical correlations, climatology, and space situational awareness.

• A Sun-to-Earth chain of cause-and-effect space weather phenomena permits a modular approach to forecast and prediction.

• In order of increasing difficulty these forecast modules are:
 – Solar Wind Disturbance Propagation
 – Energetic Particle Transport
 – Geospace Response
 – Solar Irradiance Prediction
 – Solar General Circulation

• In order of cause-to-effect these forecast modules are:
 – Solar General Circulation
 – Solar Irradiance Prediction
 – Solar Wind Disturbance Propagation
 – Energetic Particle Transport
 – Geospace Response

• The intrinsic potential for increased lead times for severe space weather warnings is as follows:
 – Solar Wind Disturbance Propagation [hours to days]
 – Energetic Particle Transport [minutes to hours]
 – Geospace Response [minutes to hours]
 – Solar Irradiance Prediction [hours to years]
 – Solar General Circulation [hours to years]

• All component modules of the end-to-end space weather numerical prediction suite will require:
 – Extensive ingest and assimilation of a wide variety of ground-based and satellite data to maintain fidelity.
 – Vast numbers of CPU and Cycle on high performance computing platforms, to achieve the requisite spatial and temporal resolution dictated by the underlying physics.
 – Periodic refresh of model methods and algorithms as new research becomes available and as customer needs continue to evolve for superior products and services.
SWPT: Space Weather Prediction Testbed

1. Executive Summary

The NOAA Space Weather Prediction Center (SWPC) and the Air Force Weather Agency (AFWA) have requested a study of a Space Weather Prediction Testbed (SWPT) to draft a Concept of Operations for such a Testbed, formulated a conceptual model, solicited input from the space physics research community, and evaluated implementation options.

Our principal recommendations are as follows:

• There is a clear need for some type of national facility for testing and evaluating models of the space weather environment, and transitioning them to operational use.
• These functions could be performed by an existing organization, such as CCMC, or performed by a new organization implemented in a scientifically active collaborative role in the endeavor.
• The activity should be put out for competitive bids and competing proposals evaluated in a competitive manner.

1. OBJECTIVE

The DoD and NOAA have the U.S. Government responsibility for providing operational space weather support for military and civil customers (in practice these responsibilities are delegated to AFWA and SWPC). In addition, the growing commercial sector also has a stake in space weather. Both the government and the commercial sector have an urgent need for an efficient and effective approach to space weather forecasting.

The urgent need to establish a fair and efficient research-to-operations (R2O) pipeline and governance structure that encourages participation by everyone involved in the space weather enterprise.

The goal of this document is to outline possible models for the R2O process and governance.

2. PRESENT SITUATION

Safeguarding Our Nation’s Advanced Technologies
SWPT: The First Year

- Begins in FY2010
- Based at DSRC
- IP Agreement with CU
- CCMC Partnership
- AFRL Partnership
- NCEP Partnership
- SWPT: Vic Pizzo
- SWPTIG: Bob Schunk
- AFWA/SWPC

ENLIL

Providing 1-4 day advance warnings of geomagnetic storms: Putting the ‘P’ in NCEP and SWPC for advanced-technology based customers around the globe.
IT: Certification & Accreditation

Plan of Action and Milestones

<table>
<thead>
<tr>
<th>C&A Review</th>
<th>POAMs Closed to Date</th>
<th>POAMs to be Closed in FY09</th>
<th>POAMs to be Closed in FY10</th>
<th>POAMs to be Closed in FY11</th>
<th>Total POAMs Identified by Review</th>
<th>% of POAMs Closed to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>100%</td>
</tr>
<tr>
<td>2008</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>41</td>
<td>22%</td>
</tr>
<tr>
<td>Enabled by FY09 NCO/NWS $ Augmentation</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NCEP/NWS invested $1.2M in FY2009
- Additional $1.2M is anticipated in FY2010
- Remainder in FY2011
- Interim Authority to Operate in effect
- Close out of Legacy Systems

<table>
<thead>
<tr>
<th>Data Acquisition, Level 0/1 Data Processing</th>
<th>Product Service, Level 2/3 Data Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Facility</td>
<td>NESDIS SOCC</td>
</tr>
<tr>
<td>Backup Facility</td>
<td>NESDIS Wallops</td>
</tr>
</tbody>
</table>

Safeguarding Our Nation’s Advanced Technologies
A real-time relational database of operational data available to external users

Not a replacement for current ftp and web interfaces

Available to:

- Emergency management community
- Federal, state, local and tribal level officials and contractors
- Government partners
- Agencies whose partnership requires close coordination with SWPC
- Commercial Service Providers who operate systems that routinely and rapidly relay SWx products, watches, advisories, warnings, and forecast information to consumers
- International space weather partners and ISES Regional Warning Centers or government entities that provide the exchange of SWx information and forecasts.

Users must be approved by SWPC

Users are expected to be familiar with relational data base technology, include SQL, and necessary communications protocols.

Safeguarding Our Nation’s Advanced Technologies
New Partnerships for Progress

- ESA/DLR/RRA discussions on ACE R/T data acquisition and delivery services
- SWPC/ISES/WMO Space Weather Initiative
- SWPC/AFWA Coordination Committee
- SWPC/NGDC Data Stewardship Initiative
- SWPC/USGS Boulder Magnetometer Transfer
- SWPC/FAA NextGeneration SWx Requirements Study
- SWPC/AFSPC Space Situational Awareness Participation
- SWPC/CSWIG Summit [April 30, 2009]
Ultimate Driver
Safeguarding Our Nation’s Advanced Technologies

Solar Maximum 2012
Ready or Not – Here It Comes

QUESTIONS?
Backup Slide: The Sun as a Cue Ball 1818-2009

The Solar Activity Cycle

Number of days per year for which the daily sunspot number was, 0, 1 to 6, and 7 to 9. [Courtesy Bill Denig, NOAA/NGDC]