

Space Weather and Manned Spaceflight

28 April 2010

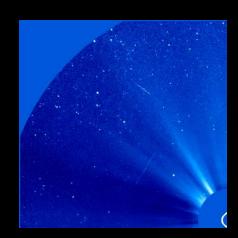
¹Neal Zapp

²A.S. Johnson, ¹K. Lee, ²T. Bevill, ²Dan Fry, ²Nic Stoffle, ²Audrey Dunegan, ²Janet Barzilla, ²Joel Flanders, ²Eliseo Gonzalez, ²T. Lin, ³R. Gaza, ³D. Zhou, ³Yvonne Roed ²Clif Amberboy, ²Lollie Lopez.

¹NASA Johnson Space Center, SF2, Houston, TX 77058 U.S.A.

²Lockheed-Martin Space Operations, Houston, TX 77258 U.S.A.

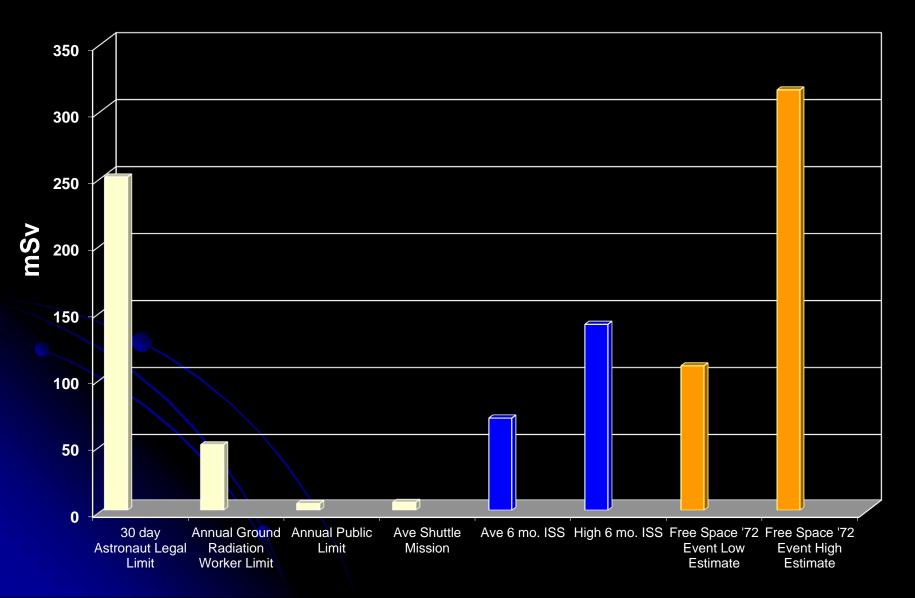
³Universities Space Research Association, Houston, TX 77058 U.S.A.



OVERVIEW

ISS TEPC Dose Rates (Ascending): 10/10/04 00:00:00 to 10/25/04 23:59:59 (GMT)

- Operational space radiation protection
 - What's a SRAG?
 - Crewed space operations
- Shift in direction
 - Crewed exploration
 - Tech. Development
 - Mars
- Primary needs & work
 - Validation and verification
 - Solar Forecasting
 - Measurements
 - Unification of NASA voice



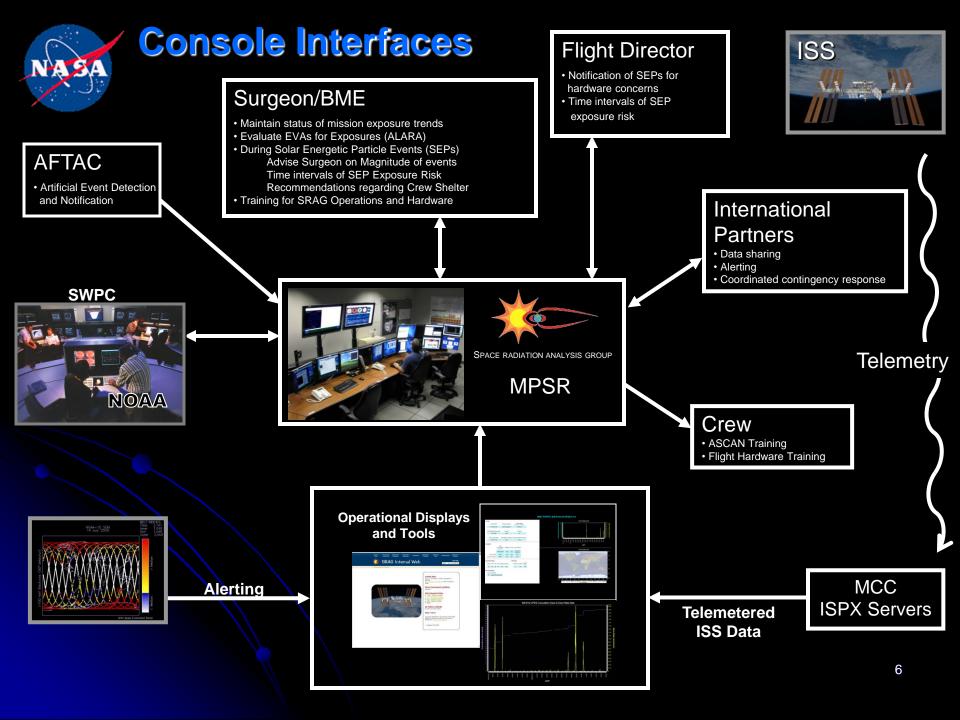
Exposure Reference

SRAG

- Est. 1962, Continuous manned program support
 - Mercury: console, dosimetry
 - Gemini: console, dosimetry
 - Apollo: console, dosimetry
 - Apollo-Soyuz: console, dosimetry
 - Skylab: console, dosimetry, equipment design (film vault)
 - Shuttle: console, dosimetry
 - NASA-Mir: console, dosimetry
 - ISS: console, dosimetry, equipment design
 - Constellation:
 - Orion system manager
 - GFE hardware provider
 - Operations (console, dosimetry)

- Physicists, Health Physicists, Engineers, Programmers, I/T Professionals
 - (4 FTE, 20 WYE 3 USRA)
 - Facilities
 - MPSR SRAG Console
 - SRDL Dosimetry lab, flight hardware controlled storage, wet lab
 - ROSA MPSR backup/mult.vehicle support, training, server room
 - Cesium photon source Calibration/characterization

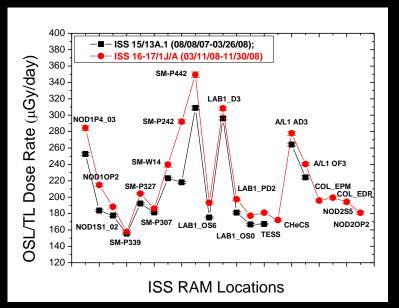
Operational Concerns



- Crew health and performance
 - Direct exposure
 - Indirect vehicle/suit systems
- Nominal exposures significantly greater than terrestrial rad-workers or air crews
- Risks
 - Loss of mission
 - Protracted loss of crew (REID)

- Risk management / mitigation
 - Time, Distance, Shielding
 - Planning/Re-planning
 - Manipulation of local shielding
- Primary Limitations
 - Solar forecasting
 - Environmental dynamics

SRAG Operational Radiation Measurements

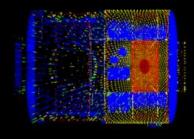

SRD Lab Workload in 2008

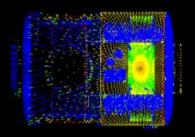
DRD Lab Workload in 2000					
Mission	Launch Date	Total Number of OSL/TL/CR-39			
STS-122	02/07/2008	336			
STS-123	03/11/2008	336			
STS-124	05/31/2008	336			
STS-126	11/14/2008	380			
ISS Expd 16/1E	02/07/2008	48			
ISS Expd 16- 17/1JA	03/11/2008	576			
ISS Expd 17/1J	05/31/2008	48			
ISS Expd 18/17S	10/12/2008	83			
ISS Expd 18/ULF2	11/14/2008	788			

Matroshka , Space Icchiban, DOSIS, Accelerator Calibrations 200-300 detectors per year

TOTAL

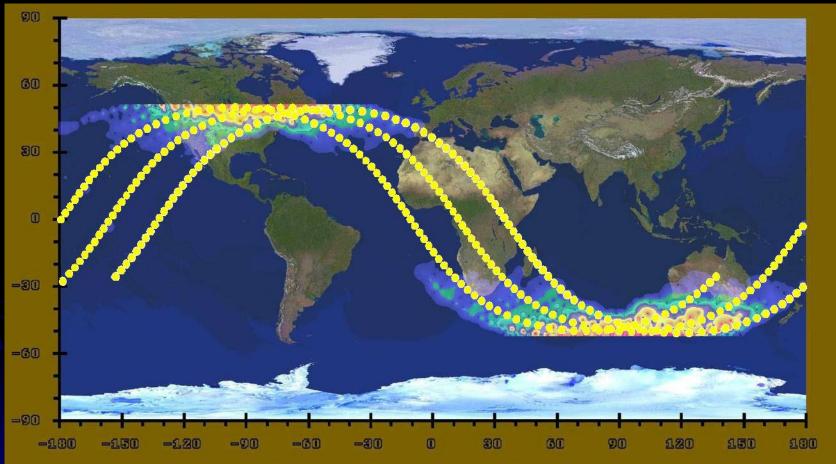
3000+


2000-2008 (μGy/day) 300 280 - LAB Airlock 260 240 220 200 180 160 Dose Rate ISS 140 120 , Dec oy ka in tha og ka og ka og the de de af the tha Launch Date

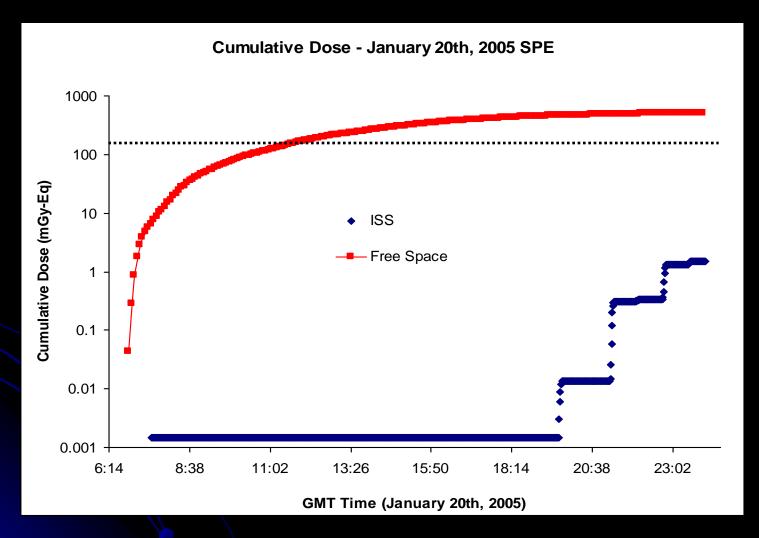


Analysis Methods

- Configuration-managed, industry-standard sector analysis modules
- Production tools derived from HRP Pro-Engineer-based products
- Rapid, precise evaluation of large structures/assemblies
- Systems engineering performance does NOT dictate mass



LEO Means Phasing


Inclination = 51.6 deg. Altitude ~ 385 km. November 6, 1997 -November 7, 1997 NASA-MIR 6 - Radiation Dosage TEPC-PRIRODA SOLAR PROTON EVENT

Exploration

"Holes", Concerns Forecasting

SRAGs "Holes", Concerns

Team inexperience

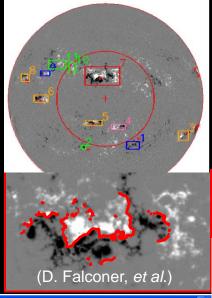
- SEP forecasting
 - Onset
 - Peak (by energy)
 - Evolution/Temporal Profile
- SEP forecasting
 - Onset
 - Peak (by energy)
 - Evolution/Temporal Profile
- SEP forecasting
 - Onset
 - Peak (by energy)
 - Evolution/Temporal Profile

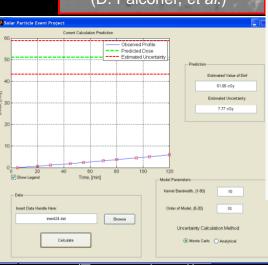
X-Ray flares: correlations

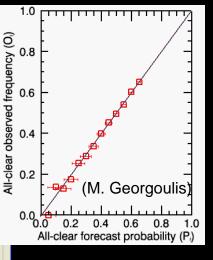
CMEs: exacerbation, potential lunar EVA impact

Magnetic Storms: exacerbation

Type "N" emission signatures : correlations

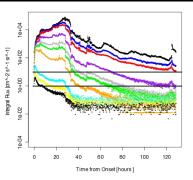

10 cm burst: correlations




Extra-Agency Collaborative Efforts

- SPE Forecasting
 - NWRA / GMU Collaboration
 - All-Clear Workshop
 - MSFC Collaboration
 - Innocentive
 - Look for multi-disciplinary approach
 - Challenge submitted and ran for 60 days.
 - 579 potential solvers looked at problem
 - Focused on active regions
- SPE Dose Projection
 - UTENN collaboration
 - Neural Network analysis
- SPE Spectral Analysis
 - NRL collaboration
 - Generation of spectral fits from 10 MeV to 1 GeV
 - Higher fidelity dose estimation
 - Transition to real-time operations

(Townsend et al.)


In-House Analysis

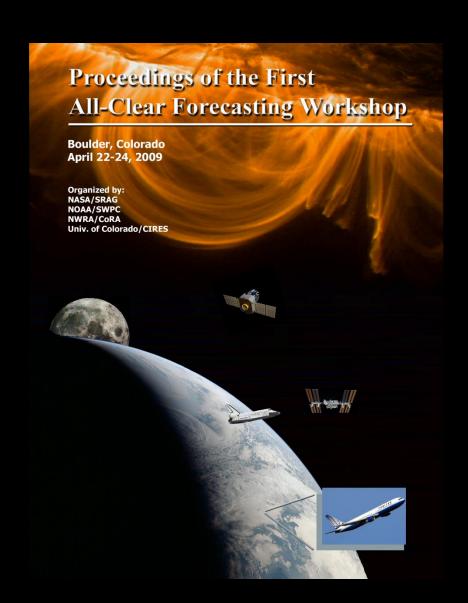
Expand

- Leverage information technology resources
 - Database structure for ease of data retrieval
- Combine with robust numerical techniques
 - Time-dependent spectral fitting spectral hardening / softening
 - Realistic vehicle geometry models
 - Realistic human models
 - Radiation transport
- Robust Historical Analysis (1967 present)
 - Distribution of spectral character
 - Distribution of SPE dose
 - Time dependent dose for mission planning

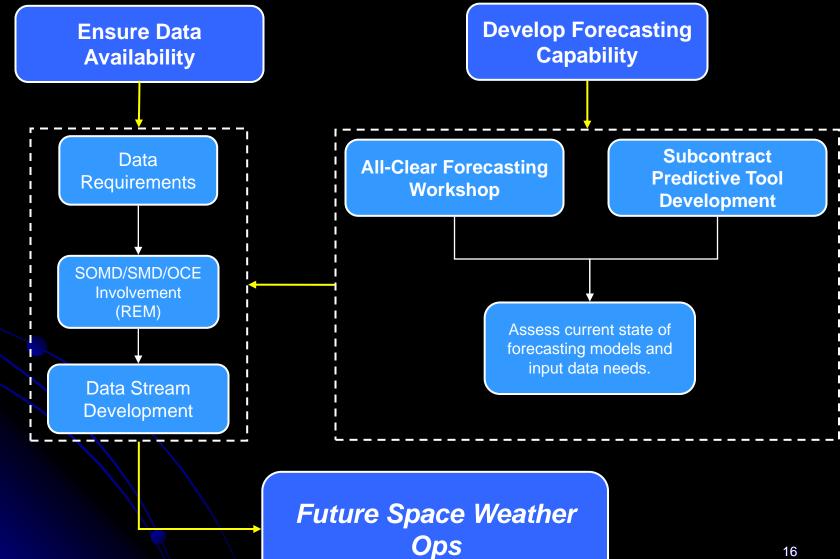
Event Integrated Flux [cm ⁻² sr ⁻¹]			
Channel Flux			
>1 MeV	3116497530.00		
>5 MeV	1820664600.00		
>10 MeV	1298067030.00		
>10 MeV	340450353.90		
>50 MeV	108314869.80		
>60 MeV	58208371.92		
>100 MeV	15946529.76		
>330 MeV	549621.24		
>420 MeV	197939.90		

reak riux / IIIIle					
[cm ⁻² s ⁻¹ sr ⁻¹] / [hours]					
Channel	annel Peak Flux Time to Peal				
>1 MeV	80000	27.83			
>5 MeV	35600	25.83			
>10 MeV	24000	25.75			
>30 MeV	5680	22.83			
>50 MeV	1670	22.83			
>60 MeV	1110	5.58			
>100 MeV	408	5.58			
>330 MeV	28.39747945207	1.00			
>420 MeV	9.50004931507	1.00			
>510 MeV	4.23863013699	1.00			

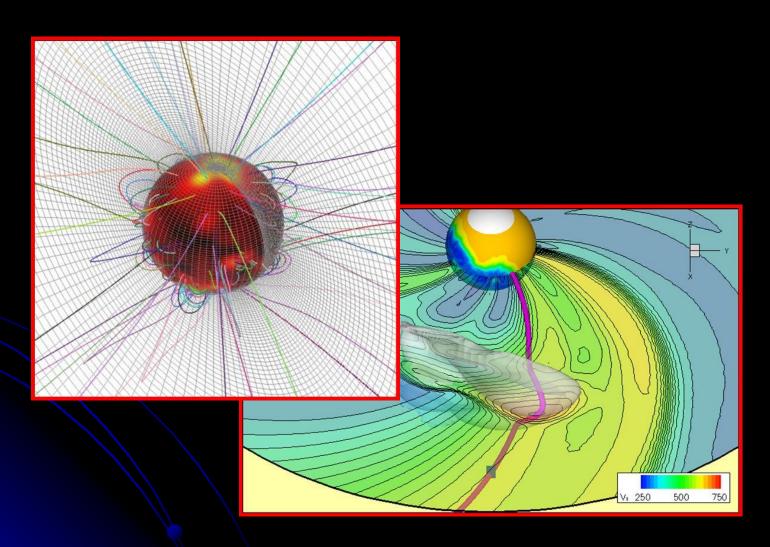
Fit Parameters			
Φ_0 [cm ⁻² sr ⁻¹]	23112100		
R ₀ [GV]	0.204004		
Υ ₁	2.46586		
ν ₂	7.12731		


	40 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -							2±0.0004		
Cummulative	10 -	0		0000						
	0-1)	10	20	30	40 from x 10.1	50 1eV @ 10pfu	60 (bours)	70	80

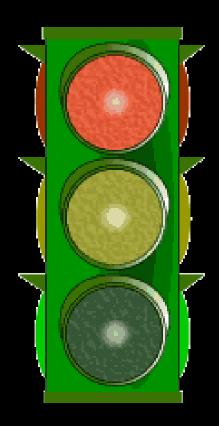
All-Clear Workshop


- LWS TR&T
- Collaborative effort
 - SRAG
 - SWPC
 - CoRA
 - CIRES
- Lays a foundation
 - Needs
 - Performance metrics
 - Initial developer feedback
- Shows a focus
 - Measurements (details)
 - Community approach
 - Spans power grids to space exploration

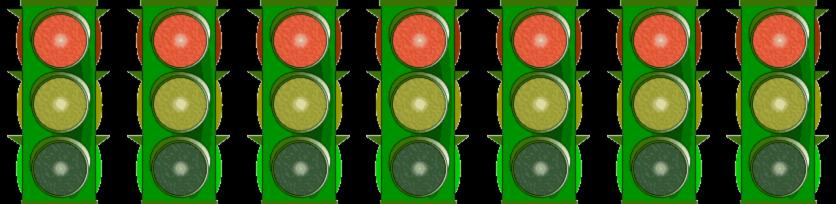
Two-Fold Consideration



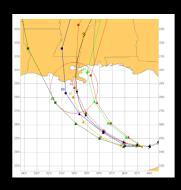
Scientific Description



Operational Description


Important differences

- Don't need to be an expert on any particular model to interpret indicators
- Ops description is robust in architecture, redundant in function, and is documented, validated, and verified according to customer requirements
- No "cool" points
- In-mission is the wrong time to learn something new



Ensembles

Unified Agency Effort

Research

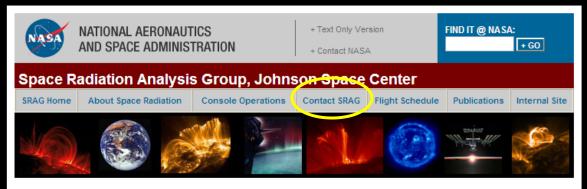
- Space Weather Working Group
 - Foster cross-directorate communication on space weather issues
- Unify agency-wide space weather needs Leverage agency resources Requirements Coordination Extra-agency collaboration/communication **Space Risk Mitigation Operations** Crew Health and **Exploration** Safety Impact Working Group Science **Agency Centers** Hardware Impact (OCE / OCHMO) Observational Aeronautics **Data Needs Technical Support Authorities** Infrastructure External

"Take Homes"

- Scientific significance somewhat different than ops utility
 - Flares and CMEs vs. ESPEs
- Model validation and verification is necessary for implementation as operational tools. Not achievable as an adhoc process.
- VERY exciting times emergence of real forecasting ability
 - Relatively strong (but not exclusive) focus on magnetic observations of active regions
- Models largely dependent on current/archive data
 - Model development CANNOT be de-coupled from asset viability
- Single-focus efforts are not attractive. Collaborative efforts containing both "developer" and "user" involvement are critical to any meaningful success.

Now this is not the end. It is not even the beginning of the end.

But it is, perhaps the end of the beginning.


- Winston Churchill

Contact Information

srag.jsc.nasa.gov

SRAG Home

About Space Radiation

- · What is Space Radiation?
- Why is space radiation important?
- · How do we protect the astronauts?
- Frequently Asked Questions

Console Operations

- Shift Schedule
- · Space Weather for Mission Ops
- Contact Duty Person

Contact SRAG

- E-Mail & Paging System
- · Contact Duty Person

Flight Schedule

Publications

Internal Site (Limited Access)

Radiation protection is essential for humans to live and work safely in space. The goal of NASA's Radiation Health Program is to achieve human exploration and development of space without exceeding acceptable risk from exposure to ionizing radiation. Legal, moral, and practical considerations require that NASA limit post flight risks incurred by humans living and working in space to "acceptable" levels.

The Space Radiation Analysis Group (SRAG) at the Johnson Space Center is responsible for ensuring that the radiation exposure received by astronauts remains below established safety limits. To fulfill this responsibility, the group provides:

- · Radiological support during missions.
- · Pre-flight and extra-vehicular activity (EVA) crew exposure projections.
- Evaluation of radiological safety with respect to exposure to isotopes and radiation producing equipment carried on the spacecraft.
- · Comprehensive crew exposure modeling capability.
- Radiation instruments to characterize and quantify the radiation environment inside and outside the spacecraft.

NASA adheres to a policy known as ALARA (As Low As Reasonably Achievable); this policy recognizes that any radiation exposure results in some risk, and therefore must be minimized. Implementing ALARA is the primary basis for real-time radiological support, and understanding and minimizing exposures from space weather events is a key to that implementation.

+ NASA JSC Web Accessibility and Policy Notices

- + NASA Home Page
- + JSC Home Page
- + Space Life Sciences Directorate
- + Habitability and Environmental Factors Division (HEFD)

Curator: Terrie Bevill NASA Responsible Official: Neal Zapp Last Updated: 8/27/2008

Last Reviewed: 11/21/2008

