NOAA Logo

NWS Logo

Organizations

Space Weather Prediction Center

National Oceanic and Atmospheric Administration

Sunday, February 23, 2020 12:25:38

Main menu

NOAA Scales mini

minimize icon
Space Weather Conditions
24-Hour Observed Maximums
R
no data
S
no data
G
no data
Latest Observed
R
no data
S
no data
G
no data
R1-R2 --
R3-R5 --
S1 or greater --
G
no data
R1-R2 --
R3-R5 --
S1 or greater --
G
no data
R1-R2 --
R3-R5 --
S1 or greater --
G
no data
maximize icon
R
no data
S
no data
G
no data
Current Space Weather Conditions
R1 (Minor) Radio Blackout Impacts
close
HF Radio: Weak or minor degradation of HF radio communication on sunlit side, occasional loss of radio contact.
Navigation: Low-frequency navigation signals degraded for brief intervals.
More about the NOAA Space Weather Scales

GOES X-ray Flux

GOES-
Latest X-Ray Event 1-8Å
Current **** **** Ratio
****
Beginning **** ****  
Maximum **** **** Integrated flux:
****
J m-2
End **** ****  

The GOES x-ray plots shown here are used to track solar activity and solar flares. Large solar x-ray flares can change the Earth’s ionosphere, which blocks high-frequency (HF) radio transmissions on the sunlit side of the Earth. Solar flares are also associated with Coronal Mass Ejections (CMEs) which can ultimately lead to geomagnetic storms. SWPC sends out space weather alerts at the M5 (5x10-5 Watts/mw) level. Some large flares are accompanied by strong radio bursts that may interfere with other radio frequencies and cause problems for satellite communication and radio navigation (GPS).

The latest event is the latest X-ray flare automatically detected by the GOES 15 or GOES 14 satellite, or manually entered if the detection algorithm fails, without regard to any earlier events. 

In other words, the "max" refers only to the maximum (peak) x-ray flux for the particular flare in question; so, even though an M-class event may have occurred earlier, it will be supplanted by the next flare detected, if the subsequent flare is only a C-class event.

The particulars for defining the begin, maximum, and end-time of an x-ray event are:

  • The begin time of an x-ray event is defined as the first minute, in a sequence of 4 minutes, of steep monotonic increase in 0.1-0.8 nm flux.
  • The x-ray event maximum is taken as the minute of the peak x-ray flux.
  • The end time is the time when the flux level decays to a point halfway between the maximum flux and the pre-flare background level.

Sometimes the algorithm will not trigger on a flare with a gradual rise-time (common for limb events), and the forecaster will have to enter the particulars manually.

The GOES X-ray flux 6-hour and three-day plots contain 1 and 5 minute averages, respectively, of solar X-rays in the 1-8 Angstrom (0.1-0.8 nm) and 0.5-4.0 Angstrom (0.05-0.4 nm) passbands. Data from the SWPC Primary GOES X-ray satellite is shown. Some data dropouts occur during satellite eclipses when the moon or Earth comes between the satellite and the sun, especially during the spring and fall. The Eclipse season lasts for about 45 to 60 days and ranges from minutes to just over an hour. The plots on this page update dynamically every minute.

GOES X-ray flux measurements (1 - 8 Angstrom flux) have been made since 1986 and, prior to that, on the NOAA SMS satellites since 1974. SWPC has used this data to produce the 1-minute and 5-minute averaged X-ray data sets and plots. For more information on the GOES satellites and their X-ray measurements see: GOES measurement data information

 

The dynamic plot above can be downloaded in multiple image formats using the menu at the upper right. The menu also offers the ability to download the displayed numerical data in JSON format.

Numerical data are also available directly from SWPC's data service at: 

https://services.swpc.noaa.gov/json/goes/

In that directory the file instrument-sources.json provides the mapping of primary and secondary measurements from each instrument to the satellite from which that measurement is made. The file satellite-longitudes.json provides the longitudes of the satellites. Observation data are found under the primary and secondary subdirectories.

NOTE: After January 31, 2020 other JSON/GOES data files and subdirectories will be removed. This is due to discontinuation of GOES-14 and GOES-15 observations on that date.

Historical 3-day plots and text files from 1996 through January 2020 are available at: 

ftp://ftp.swpc.noaa.gov/pub/warehouse/

or by following the archive link under “Data Access." Daily forecast reports are also available beginning in 1966.

The official archive for GOES data, can be found at:

http://www.ngdc.noaa.gov/stp/satellite/goes/index.html